Functional Equations Related to Inner Product Spaces

被引:4
作者
Park, Choonkil [2 ]
Park, Won-Gil [1 ]
Najati, Abbas [3 ]
机构
[1] Natl Inst Math Sci, Taejon 305340, South Korea
[2] Hanyang Univ, Dept Math, Seoul 133791, South Korea
[3] Univ Mohaghegh Ardabili, Fac Sci, Dept Math, Ardebil 51664, Iran
基金
新加坡国家研究基金会;
关键词
ADDITIVE MAPPINGS; NORMED SPACES; STABILITY;
D O I
10.1155/2009/907121
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let V,W be real vector spaces. It is shown that an odd mapping f : V -> W satisfies Sigma(2n)(i-1)f(x(i) - 1/wn Sigma(2n)(j=1)x(j)) = Sigma(2n)(i=1)f(x(i)) - 2nf(1/2n Sigma(2n)(i=1)x(i)) for all x(1), ..., x(2n) is an element of V if and only if the odd mapping f : V -> W is Cauchy additive. Furthermore, we prove the generalized Hyers-Ulam stability of the above functional equation in real Banach spaces. Copyright (C) 2009 Choonkil Park et al.
引用
收藏
页数:11
相关论文
共 28 条
[21]  
Park CG, 2007, INT J APPL MATH STAT, V7, P112
[22]  
Rassias JM., 1992, Chinese Journal of Mathematics, V20, P185
[23]   STABILITY OF LINEAR MAPPING IN BANACH-SPACES [J].
RASSIAS, TM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 72 (02) :297-280
[24]  
RASSIAS TM, 1984, B SCI MATH, V108, P95
[25]  
Ravi K, 2007, INT J APPL MATH STAT, V7, P143
[26]  
Ravi K., 2008, International Journal of Mathematics and Statistics, V3, P36
[27]  
Skof F., 1983, Rendiconti Seminario Matematico Fisico Milano, V53, P113, DOI DOI 10.1007/BF02924890
[28]  
Ulam S. M., 1960, Problems in Modern Mathematics