Functional Equations Related to Inner Product Spaces

被引:4
作者
Park, Choonkil [2 ]
Park, Won-Gil [1 ]
Najati, Abbas [3 ]
机构
[1] Natl Inst Math Sci, Taejon 305340, South Korea
[2] Hanyang Univ, Dept Math, Seoul 133791, South Korea
[3] Univ Mohaghegh Ardabili, Fac Sci, Dept Math, Ardebil 51664, Iran
基金
新加坡国家研究基金会;
关键词
ADDITIVE MAPPINGS; NORMED SPACES; STABILITY;
D O I
10.1155/2009/907121
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let V,W be real vector spaces. It is shown that an odd mapping f : V -> W satisfies Sigma(2n)(i-1)f(x(i) - 1/wn Sigma(2n)(j=1)x(j)) = Sigma(2n)(i=1)f(x(i)) - 2nf(1/2n Sigma(2n)(i=1)x(i)) for all x(1), ..., x(2n) is an element of V if and only if the odd mapping f : V -> W is Cauchy additive. Furthermore, we prove the generalized Hyers-Ulam stability of the above functional equation in real Banach spaces. Copyright (C) 2009 Choonkil Park et al.
引用
收藏
页数:11
相关论文
共 28 条
[1]  
[Anonymous], 2006, DEMONSTR MATH
[2]  
[Anonymous], NONLINEAR FUNCT ANAL
[3]  
[Anonymous], 1995, ANN MATH BLAISE PASC
[4]  
[Anonymous], 1999, ADV EQU INEQUAL HADR
[5]  
[Anonymous], 2007, INT J MATH MATH SCI, DOI DOI 10.1155/2007/63239
[6]  
Aoki T., 1950, J. Math. Soc. Japan, V2, P64
[7]  
Bouikhalene B., 2007, Int. J. Appl. Math. Stat., V7, P27
[8]  
Cholewa P.W., 1984, Aequat. Math, V27, P76, DOI [10.1007/BF02192660, DOI 10.1007/BF02192660]
[9]   ON THE STABILITY OF THE QUADRATIC MAPPING IN NORMED SPACES [J].
CZERWIK, S .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1992, 62 :59-64
[10]   A GENERALIZATION OF THE HYERS-ULAM-RASSIAS STABILITY OF APPROXIMATELY ADDITIVE MAPPINGS [J].
GAVRUTA, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (03) :431-436