Nonexistence of some Griesmer codes over Fq

被引:7
作者
Kumegawa, Kazuki [1 ]
Maruta, Tatsuya [1 ]
机构
[1] Osaka Prefecture Univ, Dept Math & Informat Sci, Sakai, Osaka 5998531, Japan
基金
日本学术振兴会;
关键词
Optimal linear codes; Griesmer bound; Minihyper; Arcs in PG(r; q); ARY LINEAR CODES; MINIMUM LENGTH;
D O I
10.1016/j.disc.2015.09.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the nonexistence of [g(q)(4, d), 4, d](q) codes ford = q(3)/2 - q(2) - 2q + 1 for q = 2(h), h >= 3, and for d = 2q(3) - 3q(2) - 2q + 1 for q >= 5, where g(q)(k, d) = Sigma(k-1)(i=0) [d/q(i)]. We also prove the nonexistence of [g(q)(k, d), k, d](q) code for d = (k - 2)q(k-1) - rq(k-2) - q + 1 for 3 <= k - 1 <= r <= q - q/p, q = p(h) with p prime. (c) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:515 / 521
页数:7
相关论文
共 17 条
[1]  
[Anonymous], 1991, General Galois Geometries
[2]   On the minimum length of some linear codes [J].
Cheon, E. J. ;
Maruta, T. .
DESIGNS CODES AND CRYPTOGRAPHY, 2007, 43 (2-3) :123-135
[3]   The non-existence of Griesmer codes with parameters close to codes of Belov type [J].
Cheon, E. J. .
DESIGNS CODES AND CRYPTOGRAPHY, 2011, 61 (02) :131-139
[4]   A class of optimal linear codes of length one above the Griesmer bound [J].
Cheon, E. J. .
DESIGNS CODES AND CRYPTOGRAPHY, 2009, 51 (01) :9-20
[5]   A geometric approach to classifying Griesmer codes [J].
Hill, Ray ;
Ward, Harold .
DESIGNS CODES AND CRYPTOGRAPHY, 2007, 44 (1-3) :169-196
[6]  
Hirschfeld J.W.P, 1998, PROJECTIVE GEOMETRIE
[7]  
Hirschfeld JWP, 2001, DEV MATH, V3, P201
[8]  
Kageyama Y., 2015, GEOMETRIC CONS UNPUB
[9]  
Kanazawa R., 2011, ELECTRON J COMB, V18, P27
[10]   On codes meeting the Griesmer bound [J].
Klein, A .
DISCRETE MATHEMATICS, 2004, 274 (1-3) :289-297