New goodness of fit tests for the Cauchy distribution

被引:18
作者
Mahdizadeh, M. [1 ]
Zamanzade, Ehsan [2 ]
机构
[1] Hakim Sabzevari Univ, Dept Stat, Sabzevar, Iran
[2] Univ Isfahan, Dept Stat, Esfahan, Iran
关键词
Heavy-tailed distributions; Kullback-Leibler distance; likelihood ratio; ENTROPY;
D O I
10.1080/02664763.2016.1193726
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Some goodness-of-fit procedures for the Cauchy distribution are presented. The power comparisons indicate that the new tests possess good performances among the competitors, especially against symmetric alternatives. A financial data set is analyzed for illustration.
引用
收藏
页码:1106 / 1121
页数:16
相关论文
共 22 条
[1]  
[Anonymous], 1993, Continuous Univariate Distributions, DOI DOI 10.1016/0167-9473(96)90015-8
[2]  
BARNETT VD, 1966, BIOMETRIKA, V53, P151
[3]  
Bowley A.L., 1920, ELEMENTS STAT
[4]  
Bowman A.W., 1992, J STAT COMPUT SIMUL, V40, P1
[5]   Testing goodness-of-fit for Laplace distribution based on maximum entropy [J].
Choi, Byungjin ;
Kim, Keeyoung .
STATISTICS, 2006, 40 (06) :517-531
[6]   ROBUST ESTIMATION OF LOCATION [J].
CROW, EL ;
SIDDIQUI, MM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1967, 62 (318) :353-&
[7]   ENTROPY-BASED TESTS OF UNIFORMITY [J].
DUDEWICZ, EJ ;
VANDERMEULEN, EC .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1981, 76 (376) :967-974
[8]   2 MEASURES OF SAMPLE ENTROPY [J].
EBRAHIMI, N ;
PFLUGHOEFT, K ;
SOOFI, ES .
STATISTICS & PROBABILITY LETTERS, 1994, 20 (03) :225-234
[9]  
Grzegorzewski P, 1999, COMMUN STAT-THEOR M, V28, P1183
[10]   Goodness-of-fit tests for the Cauchy distribution based on the empirical characteristic function [J].
Gürtler, N ;
Henze, N .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2000, 52 (02) :267-286