BACKWARD ORBITS IN THE UNIT BALL

被引:6
作者
Arosio, Leandro [1 ]
Guerini, Lorenzo [2 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
[2] Univ Amsterdam, Korteweg de Vries Inst Math, Sci Pk 107, NL-1090 GE Amsterdam, Netherlands
关键词
Backward orbits; canonical models; holomorphic iteration; FIXED-POINTS;
D O I
10.1090/proc/14544
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that if f : B-q -> B-q is a holomorphic self-map of the unit ball in C-q and zeta is an element of partial derivative B-q is a boundary repelling fixed point with dilation lambda > 1, then there exists a backward orbit converging to zeta with step log lambda. Morever, any two backward orbits converging to the same boundary repelling fixed point stay at finite distance. As a consequence there exists a unique canonical premodel (B-k, l, t) associated with zeta where 1 <= k <= q, t is a hyperbolic automorphism of B-k, and whose image l(B-k) is precisely the set of starting points of backward orbits with bounded step converging to zeta. This answers questions of Ostapyuk (2011) and the first author (2015, 2017).
引用
收藏
页码:3947 / 3954
页数:8
相关论文
共 10 条
[1]   Common Boundary Regular Fixed Points for Holomorphic Semigroups in Strongly Convex Domains [J].
Abate, Marco ;
Bracci, Filippo .
COMPLEX ANALYSIS AND DYNAMICAL SYSTEMS VI, PT 2: COMPLEX ANALYSIS, QUASICONFORMAL MAPPINGS, COMPLEX DYNAMICS, 2016, 667 :1-14
[2]  
Abate Marco, 1989, RES LECT NOTES MATH
[3]   Canonical Models for the Forward and Backward Iteration of Holomorphic Maps [J].
Arosio, Leandro .
JOURNAL OF GEOMETRIC ANALYSIS, 2017, 27 (02) :1178-1210
[4]   CANONICAL MODELS FOR HOLOMORPHIC ITERATION [J].
Arosio, Leandro ;
Bracci, Filippo .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (05) :3305-3339
[5]   The stable subset of a univalent self-map [J].
Arosio, Leandro .
MATHEMATISCHE ZEITSCHRIFT, 2015, 281 (3-4) :1089-1110
[6]   Fixed points of commuting holomorphic mappings other than the Wolff point [J].
Bracci, F .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (06) :2569-2584
[7]  
Bracci F, 2010, REV MAT IBEROAM, V26, P57
[8]   BACKWARD ITERATION IN THE UNIT BALL [J].
Ostapyuk, Olena .
ILLINOIS JOURNAL OF MATHEMATICS, 2011, 55 (04) :1569-1602
[9]  
Poggi-Corradini P, 2000, ANN ACAD SCI FENN-M, V25, P487
[10]  
Poggi-Corradini P, 2003, REV MAT IBEROAM, V19, P943