Wilson Score Kernel Density Estimation for Bernoulli Trials

被引:0
|
作者
Sorensen, Lars Caroe [1 ]
Mathiesen, Simon [1 ]
Kraft, Dirk [1 ]
Petersen, Henrik Gordon [1 ]
机构
[1] Univ Southern Denmark, SDU Robot, Campusvej, Odense, Denmark
来源
ICINCO: PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS | 2020年
关键词
Iterative Learning; Statistical Function Estimators; Binomial Trials;
D O I
10.5220/0009816503050313
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a new function estimator, called Wilson Score Kernel Density Estimation, that allows to estimate a mean probability and the surrounding confidence interval for parameterized processes with binomially distributed outcomes. Our estimator combines the advantages of kernel smoothing, from Kernel Density Estimation, and robustness to low number of samples, from Wilson Score. This allows for more robust and data efficient estimates compared to the individual use of these two estimators. While our estimator is generally applicable for processes with binomially distributed outcomes, we will present it in the context of iterative optimization. Here we first show the advantage of our estimator on a mathematically well defined problem, and then apply our estimator to an industrial automation process.
引用
收藏
页码:305 / 313
页数:9
相关论文
共 50 条
  • [21] On estimation of probability of events from imperfect Bernoulli trials
    Djuric, PM
    Huang, YF
    MATHEMATICAL MODELING, BAYESIAN ESTIMATION, AND INVERSE PROBLEMS, 1999, 3816 : 68 - 76
  • [22] ESTIMATION IN BERNOULLI TRIALS UNDER A GENERALIZED SAMPLING PLAN
    KIM, SI
    NACHLAS, JA
    TECHNOMETRICS, 1984, 26 (04) : 379 - 387
  • [23] Estimation of a Bernoulli parameter p from imperfect trials
    Djuric, PM
    Huang, YF
    IEEE SIGNAL PROCESSING LETTERS, 2000, 7 (06) : 160 - 163
  • [24] From Gaussian kernel density estimation to kernel methods
    Shitong Wang
    Zhaohong Deng
    Fu-lai Chung
    Wenjun Hu
    International Journal of Machine Learning and Cybernetics, 2013, 4 : 119 - 137
  • [25] From Gaussian kernel density estimation to kernel methods
    Wang, Shitong
    Deng, Zhaohong
    Chung, Fu-lai
    Hu, Wenjun
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2013, 4 (02) : 119 - 137
  • [26] Adaptive kernel density estimation using beta kernel
    Yin, Xun-Fu
    Hao, Zhi-Feng
    PROCEEDINGS OF 2007 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2007, : 3293 - +
  • [27] A Simple Approach to Traffic Density Estimation by using Kernel Density Estimation
    Yilan, Mikail
    Ozdemir, Mehmet Kemal
    2015 23RD SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2015, : 1865 - 1868
  • [28] Kernel density estimation for random fields (density estimation for random fields)
    Carbon, M
    Tran, LT
    Wu, B
    STATISTICS & PROBABILITY LETTERS, 1997, 36 (02) : 115 - 125
  • [29] Rank transformations in Kernel density estimation
    Eichner, Gerrit
    Stute, Winfried
    JOURNAL OF NONPARAMETRIC STATISTICS, 2013, 25 (02) : 427 - 445
  • [30] Kernel density estimation for hierarchical data
    Wilson, Christopher M.
    Gerard, Patrick
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (06) : 1495 - 1512