Wilson Score Kernel Density Estimation for Bernoulli Trials

被引:0
|
作者
Sorensen, Lars Caroe [1 ]
Mathiesen, Simon [1 ]
Kraft, Dirk [1 ]
Petersen, Henrik Gordon [1 ]
机构
[1] Univ Southern Denmark, SDU Robot, Campusvej, Odense, Denmark
来源
ICINCO: PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS | 2020年
关键词
Iterative Learning; Statistical Function Estimators; Binomial Trials;
D O I
10.5220/0009816503050313
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a new function estimator, called Wilson Score Kernel Density Estimation, that allows to estimate a mean probability and the surrounding confidence interval for parameterized processes with binomially distributed outcomes. Our estimator combines the advantages of kernel smoothing, from Kernel Density Estimation, and robustness to low number of samples, from Wilson Score. This allows for more robust and data efficient estimates compared to the individual use of these two estimators. While our estimator is generally applicable for processes with binomially distributed outcomes, we will present it in the context of iterative optimization. Here we first show the advantage of our estimator on a mathematically well defined problem, and then apply our estimator to an industrial automation process.
引用
收藏
页码:305 / 313
页数:9
相关论文
共 50 条
  • [1] Kernel Density Estimation for Post Recognition Score Analysis
    Sudholt, Sebastian
    Rothacker, Leonard
    Fink, Gernot A.
    PATTERN RECOGNITION, GCPR 2014, 2014, 8753 : 593 - 603
  • [2] SEQUENTIAL ESTIMATION IN BERNOULLI TRIALS
    CABILIO, P
    ANNALS OF STATISTICS, 1977, 5 (02): : 342 - 356
  • [3] NOTE ON ESTIMATION IN BERNOULLI TRIALS WITH DEPENDENCE
    PRICE, B
    COMMUNICATIONS IN STATISTICS PART A-THEORY AND METHODS, 1976, 5 (07): : 661 - 671
  • [4] Optimal Stopping for Interval Estimation in Bernoulli Trials
    Yaacoub, Tony
    Moustakides, George V.
    Mei, Yajun
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (05) : 3022 - 3033
  • [5] ON PARAMETER-ESTIMATION IN BERNOULLI TRIALS WITH DEPENDENCE
    KIM, SI
    BAI, DS
    COMMUNICATIONS IN STATISTICS PART A-THEORY AND METHODS, 1980, 9 (13): : 1401 - 1410
  • [6] KERNEL ESTIMATION OF THE DENSITY OF A STATISTIC
    SHERMAN, M
    STATISTICS & PROBABILITY LETTERS, 1994, 21 (01) : 29 - 36
  • [7] Kernel density estimation on the torus
    Di Marzio, Marco
    Panzera, Agnese
    Taylor, Charles C.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (06) : 2156 - 2173
  • [8] Robust kernel density estimation
    Kim, JooSeuk
    Scott, Clayton
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 3381 - 3384
  • [9] ON KERNEL DENSITY DERIVATIVE ESTIMATION
    JONES, MC
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1994, 23 (08) : 2133 - 2139
  • [10] Reweighted kernel density estimation
    Hazelton, Martin L.
    Turlach, Berwin A.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (06) : 3057 - 3069