A Grid-based ACO Algorithm for Parameters Optimization in Support Vector Machines

被引:3
作者
Zhang, XiaoLi [1 ]
Chen, XueFeng [1 ]
Zhang, ZhouSuo [1 ]
He, ZhengJia [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Mech Engn, State Key Lab Mfg Syst Engn, Xian 710049, Peoples R China
来源
2008 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, VOLS 1 AND 2 | 2008年
关键词
D O I
10.1109/GRC.2008.4664645
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The parameters optimization of the penalty constant C and the bandwidth of the radial basis function (RBF) kernel or is an important step in establishing an efficient and high-performance support vector machines (SVMs) model. Aiming at optimizing the parameters of SVMs, this paper presents a grid-based ant colony optimization (ACO) algorithm to choose parameters C and a automatically for SVMS instead of selecting parameters randomly by human's experience, so that the generalization error can be reduced and the generalization performance can be improved simultaneously. Some experimental results confirm the feasibility and efficiency of the approach.
引用
收藏
页码:805 / 808
页数:4
相关论文
共 10 条
[1]   Optimizing resources in model selection for support vector machine [J].
Adankon, Mathias M. ;
Cheriet, Mohamed .
PATTERN RECOGNITION, 2007, 40 (03) :953-963
[2]  
[Anonymous], 1999, The Nature Statist. Learn. Theory
[3]   Choosing multiple parameters for support vector machines [J].
Chapelle, O ;
Vapnik, V ;
Bousquet, O ;
Mukherjee, S .
MACHINE LEARNING, 2002, 46 (1-3) :131-159
[4]   Ant algorithms and stigmergy [J].
Dorigo, M ;
Bonabeau, E ;
Theraulaz, G .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2000, 16 (08) :851-871
[5]  
Duan H. B., 2005, ANT COLONY ALGORITHM
[6]   Evaluation of simple performance measures for tuning SVM hyperparameters [J].
Duan, K ;
Keerthi, SS ;
Poo, AN .
NEUROCOMPUTING, 2003, 51 :41-59
[7]   A GA-based feature selection and parameters optimization for support vector machines [J].
Huang, Cheng-Lung ;
Wang, Chieh-Jen .
EXPERT SYSTEMS WITH APPLICATIONS, 2006, 31 (02) :231-240
[8]   A hybrid approach for feature subset selection using neural networks and ant colony optimization [J].
Sivagaminathan, Rahul Karthik ;
Ramakrishnan, Sreeram .
EXPERT SYSTEMS WITH APPLICATIONS, 2007, 33 (01) :49-60
[9]   A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy [J].
Wu, Chih-Hung ;
Tzeng, Gwo-Hshiung ;
Goo, Yeong-Jia ;
Fang, Wen-Chang .
EXPERT SYSTEMS WITH APPLICATIONS, 2007, 32 (02) :397-408
[10]   Fault diagnosis based on support vector machines with parameter optimisation by artificial immunisation algorithm [J].
Yuan, Shengfa ;
Chu, Fulei .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2007, 21 (03) :1318-1330