Microfluidic-assisted bacteriophage encapsulation into liposomes

被引:34
作者
Leung, Sharon S. Y. [1 ,2 ]
Morales, Sandra [3 ]
Britton, Warwick [4 ,5 ]
Kutter, Elizabeth [6 ]
Chan, Hak-Kim [1 ]
机构
[1] Univ Sydney, Fac Pharm, A15 Pharm & Bank Bldg, Sydney, NSW 2006, Australia
[2] Chinese Univ Hong Kong, Fac Pharm, Hong Kong, Hong Kong, Peoples R China
[3] AmpliPhi Biosci AU, 7-27 Dale St, Sydney, NSW 2100, Australia
[4] Univ Sydney, Centenary Inst, TB Res Program, Sydney, NSW 2006, Australia
[5] Univ Sydney, Sydney Med Sch, Sydney, NSW 2006, Australia
[6] Evergreen State Coll, Olympia, WA 98502 USA
基金
英国医学研究理事会; 澳大利亚研究理事会;
关键词
Phage; PEV2; PEV40; Antibiotic resistance; Cross-mixer; Liposome-phage; PSEUDOMONAS-AERUGINOSA; PHAGE THERAPY;
D O I
10.1016/j.ijpharm.2018.04.063
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Microfluidics has recently emerged as a new method of manufacturing liposomes, which allows reproducible mixing in miliseconds on the nanoliter scale. Here we investigated the feasibility of a microfluidic flow focusing setup built from commercially available fittings to encapsulate phages into liposomes. Two types of Pseudomonas phages, PEV2 (Podovirus, similar to 65 nm) and PEV40 (Myovirus, similar to 220 nm), were used as model phages. A mixture of soy phosphatidylcholine and cholesterol at a ratio of 4: 1 dissolved in absolute ethanol with a total solid content of 17.5 mg/mL was injected through the center inlet channel of a cross mixer. Phage suspensions were injected into the cross mixer from the two side channels intersecting with the center channel. The total flow rate (TFR) varied 160-320 mu L/min and the organic/aqueous flow rate ratio (FRR) varied 1:3-2:3. The size of liposomes and the encapsulation efficiency both increased with increasing FRR and slightly decreased with increasing TFR. Due to the different size of the two studied phages, the size of liposomes encapsulating PEV2 were smaller (135-218 nm) than those encapsulating the Myovirus PEV40 (261-448 nm). Highest encapsulation efficiency of PEV2 (59%) and PEV40 (50%) was achieved at a TFR of 160 mu L/ml and a FRR of 2:3. Generally, the encapsulation efficiency was slightly higher than that obtained from the conventional thin film hydration followed by extrusion method. In summary, the proposed microfluidic technique was capable of encapsulating phages of different size into liposomes with reasonable encapsulation efficiency and minimal titer reduction.
引用
收藏
页码:176 / 182
页数:7
相关论文
共 27 条
[11]   Presence of Electrostatically Adsorbed Polysaccharides Improves Spray Drying of Liposomes [J].
Karadag, Ayse ;
Ozcelik, Beraat ;
Sramek, Martin ;
Gibis, Monika ;
Kohlus, Reinhard ;
Weiss, Jochen .
JOURNAL OF FOOD SCIENCE, 2013, 78 (02) :E206-E221
[12]   High-throughput manufacturing of size-tuned liposomes by a new microfluidics method using enhanced statistical tools for characterization [J].
Kastner, Elisabeth ;
Kaur, Randip ;
Lowry, Deborah ;
Moghaddam, Behfar ;
Wilkinson, Alexander ;
Perrie, Yvonne .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2014, 477 (1-2) :361-368
[13]   Bacteriophage therapy for refractory Pseudomonas aeruginosa urinary tract infection [J].
Khawaldeh, A. ;
Morales, S. ;
Dillon, B. ;
Alavidze, Z. ;
Ginn, A. N. ;
Thomas, L. ;
Chapman, S. J. ;
Dublanchet, A. ;
Smithyman, A. ;
Iredell, J. R. .
JOURNAL OF MEDICAL MICROBIOLOGY, 2011, 60 (11) :1697-1700
[14]   Phage Therapy in Clinical Practice: Treatment of Human Infections [J].
Kutter, Elizabeth ;
De Vos, Daniel ;
Gvasalia, Guram ;
Alavidze, Zemphira ;
Gogokhia, Lasha ;
Kuhl, Sarah ;
Abedon, Stephen T. .
CURRENT PHARMACEUTICAL BIOTECHNOLOGY, 2010, 11 (01) :69-86
[15]   Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model [J].
McVay, Catherine S. ;
Velasquez, Marisela ;
Fralick, Joe A. .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2007, 51 (06) :1934-1938
[16]   Quality-Controlled Small-Scale Production of a Well-Defined Bacteriophage Cocktail for Use in Human Clinical Trials [J].
Merabishvili, Maya ;
Pirnay, Jean-Paul ;
Verbeken, Gilbert ;
Chanishvili, Nina ;
Tediashvili, Marina ;
Lashkhi, Nino ;
Glonti, Thea ;
Krylov, Victor ;
Mast, Jan ;
Van Parys, Luc ;
Lavigne, Rob ;
Volckaert, Guido ;
Mattheus, Wesley ;
Verween, Gunther ;
De Corte, Peter ;
Rose, Thomas ;
Jennes, Serge ;
Zizi, Martin ;
De Vos, Daniel ;
Vaneechoutte, Mario .
PLOS ONE, 2009, 4 (03)
[17]   Clinical Aspects of Phage Therapy [J].
Miedzybrodzki, Ryszard ;
Borysowski, Jan ;
Weber-Dabrowska, Beata ;
Fortuna, Wojciech ;
Letkiewicz, Slawomir ;
Szufnarowski, Krzysztof ;
Pawelczyk, Zdzislaw ;
Rogoz, Pawel ;
Klak, Marlena ;
Wojtasik, Elzbieta ;
Gorski, Andrzej .
ADVANCES IN VIRUS RESEARCH, VOL 83: BACTERIOPHAGES, PT B, 2012, 83 :73-121
[18]   Pulmonary Bacteriophage Therapy on Pseudomonas aeruginosa Cystic Fibrosis Strains: First Steps Towards Treatment and Prevention [J].
Morello, Eric ;
Saussereau, Emilie ;
Maura, Damien ;
Huerre, Michel ;
Touqui, Lhousseine ;
Debarbieux, Laurent .
PLOS ONE, 2011, 6 (02)
[19]   A first step toward liposome-mediated intracellular bacteriophage therapy [J].
Nieth, Anita ;
Verseux, Cyprien ;
Barnert, Sabine ;
Suess, Regine ;
Roemer, Winfried .
EXPERT OPINION ON DRUG DELIVERY, 2015, 12 (09) :1411-1424
[20]   A microfluidic dialysis device for complex biological mixture SERS analysis [J].
Perozziello, Gerardo ;
Candeloro, Patrizio ;
Gentile, Francesco ;
Coluccio, Maria Laura ;
Tallerico, Marco ;
De Grazia, Antonio ;
Nicastri, Annalisa ;
Perri, Angela Mena ;
Parrotta, Elvira ;
Pardeo, Francesca ;
Catalano, Rossella ;
Cuda, Giovanni ;
Di Fabrizio, Enzo .
MICROELECTRONIC ENGINEERING, 2015, 144 :37-41