Underwater Image Restoration Based on a Parallel Convolutional Neural Network

被引:63
作者
Wang, Keyan [1 ,2 ]
Hu, Yan [1 ]
Chen, Jun [3 ]
Wu, Xianyun [1 ,2 ]
Zhao, Xi [1 ]
Li, Yunsong [1 ,2 ]
机构
[1] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Shaanxi, Peoples R China
[2] Xidian Univ, Collaborat Innovat Ctr Informat Sensing & Underst, Xian 710071, Shaanxi, Peoples R China
[3] McMaster Univ, Dept Elect & Comp Engn, Hamilton, ON L8S 4K1, Canada
基金
中国博士后科学基金;
关键词
image restoration; underwater imaging; convolutional neural network; image degradation; QUALITY ASSESSMENT;
D O I
10.3390/rs11131591
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Restoring degraded underwater images is a challenging ill-posed problem. The existing prior-based approaches have limited performance in many situations due to the reliance on handcrafted features. In this paper, we propose an effective convolutional neural network (CNN) for underwater image restoration. The proposed network consists of two paralleled branches: a transmission estimation network (T-network) and a global ambient light estimation network (A-network); in particular, the T-network employs cross-layer connection and multi-scale estimation to prevent halo artifacts and to preserve edge features. The estimates produced by these two branches are leveraged to restore the clear image according to the underwater optical imaging model. Moreover, we develop a new underwater image synthesizing method for building the training datasets, which can simulate images captured in various underwater environments. Experimental results based on synthetic and real images demonstrate that our restored underwater images exhibit more natural color correction and better visibility improvement against several state-of-the-art methods.
引用
收藏
页数:21
相关论文
共 44 条
[1]   Color Balance and Fusion for Underwater Image Enhancement [J].
Ancuti, Codruta O. ;
Ancuti, Cosmin ;
De Vleeschouwer, Christophe ;
Bekaert, Philippe .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (01) :379-393
[2]  
Ancuti CO, 2011, IEEE IMAGE PROC, P1557, DOI 10.1109/ICIP.2011.6115744
[3]  
[Anonymous], P 3 IMEKO INT C METR
[4]  
[Anonymous], ARXIV180904624V1
[5]  
[Anonymous], P IEEE INT C VIS COM
[6]  
[Anonymous], 2018, UNDERWATER SINGLE IM
[7]  
[Anonymous], 2010, PROC OCEANS MTSIEEE PROC OCEANS MTSIEEE PROC OCEANS MTSIEEE PROC OCEANS MTSIEEE PROC OCEANS MTSIEEE PROC OCEANS MTSIEEE PROC OCEANS MTSIEEE PROC OCEANS MTSIEEE PROC OCEANS MTSIEEE PROC OCEANS MTSIEEE PROC OCEANS MTSIEEE PROC OCEANS MTSIEEE PROC OCEANS MTSIEEE PROC OCEANS MTSIEEE PROC OCEANS MTSIEEE PROC OCEANS MTSIEEE PROC OCEANS MTSIEEE PROC OCEANS MTSIEEE PROC OCEANS MTSIEEE PROC OCEANS MTSIEEE PROC OCEANS MTSIEEE PROC OCEANS MTSIEEE PROC OCEANS MTSIEEE PROC OCEANS MTSIEEE,
[8]  
[Anonymous], ARXIV180400213
[9]  
[Anonymous], 2018, IEEE Trans. Syst. Man Cybern. Syst., DOI DOI 10.1109/TSMC.2017.2788902
[10]  
[Anonymous], P IEEE C COMP VIS PA