Passive decoy-state quantum key distribution using weak coherent pulses with modulator attenuation

被引:3
作者
Li Yuan [1 ,2 ]
Bao Wan-Su [1 ,2 ]
Li Hong-Wei [2 ]
Zhou Chun [1 ,2 ]
Wang Yang [1 ,2 ]
机构
[1] Zhengzhou Informat Sci & Technol Inst, Zhengzhou 450004, Peoples R China
[2] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
quantum key distribution; passive decoy state; modulator attenuation; weak coherent pulses; STANDARD TELECOM FIBER; UNCONDITIONAL SECURITY; CRYPTOGRAPHY;
D O I
10.1088/1674-1056/24/11/110307
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Passive decoy-state quantum key distribution is more desirable than the active one in some scenarios. It is also affected by the imperfections of the devices. In this paper, the influence of modulator attenuation on the passive decoy-state method is considered. We introduce and analyze the unbalanced Mach-Zehnder interferometer, briefly, and combining with the virtual source and imaginary unitary transformation, we characterize the passive decoy-state method using a weak coherent photon source with modulator attenuation. According to the attenuation parameter delta, the pass efficiencies are given. Then, the key generation rate can be acquired. From numerical simulations, it can be seen that modulator attenuation has a non-negligible influence on the performance of passive-state QKD protocol. Based on the research, the analysis method of virtual source and imaginary unitary transformation are preferred in analyzing passive decoy state protocol, and the passive decoy-state method is better than the active one and is close to the active vacuum + weak decoy state under the condition of having the same modulator attenuation.
引用
收藏
页数:7
相关论文
共 47 条
[1]   Device-independent security of quantum cryptography against collective attacks [J].
Acin, Antonio ;
Brunner, Nicolas ;
Gisin, Nicolas ;
Massar, Serge ;
Pironio, Stefano ;
Scarani, Valerio .
PHYSICAL REVIEW LETTERS, 2007, 98 (23)
[2]   Simple and efficient quantum key distribution with parametric down-conversion [J].
Adachi, Yoritoshi ;
Yamamoto, Takashi ;
Koashi, Masato ;
Imoto, Nobuyuki .
PHYSICAL REVIEW LETTERS, 2007, 99 (18)
[3]  
Arfken G, 1985, MATH MEHTHODS PHYS
[4]  
Bennett C. H., 1992, Journal of Cryptology, V5, P3, DOI 10.1007/BF00191318
[5]  
Bennett C H, 1984, IEEE INT C COMP SYST, V175, P175
[6]   QUANTUM CRYPTOGRAPHY USING ANY 2 NONORTHOGONAL STATES [J].
BENNETT, CH .
PHYSICAL REVIEW LETTERS, 1992, 68 (21) :3121-3124
[7]   Limitations on practical quantum cryptography [J].
Brassard, G ;
Lütkenhaus, N ;
Mor, T ;
Sanders, BC .
PHYSICAL REVIEW LETTERS, 2000, 85 (06) :1330-1333
[8]  
Brassard G., 1993, LECT NOTES COMPUTER, P410
[9]   Side-Channel-Free Quantum Key Distribution [J].
Braunstein, Samuel L. ;
Pirandola, Stefano .
PHYSICAL REVIEW LETTERS, 2012, 108 (13)
[10]   Passive decoy-state quantum key distribution with practical light sources [J].
Curty, Marcos ;
Ma, Xiongfeng ;
Qi, Bing ;
Moroder, Tobias .
PHYSICAL REVIEW A, 2010, 81 (02)