System Parameter Identification Experiment Based on Hopfield Neural Network for Self Balancing Vehicle

被引:0
作者
Song, Yuan [1 ]
Xing, Bin [1 ]
Guo, Lei [1 ]
Xiao Xu [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Automat, Beijing 100876, Peoples R China
来源
PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017) | 2017年
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Parameter Identification; Hopfield Neural Network; Self Balancing Vehicle;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, the system parameter identification attracts attention of scholars and engineers, as the system control precision can be improved with it. In this paper, we take advantage of Hopfield neural network to identify the system parameters. Firstly, a kind of self balancing vehicle dynamic model is proposed. Secondly, the subsystem of the self balancing vehicle is analyzed in the form of Hopfield neural network. Finally, taking the actual parameter into the dynamic model, the simulation of the system parameter identification is presented. From the simulation result, there are errors between the actual value deviation and the system parameter identification result achieved in the paper, but it is within the acceptable range, so the identification results are acceptable.
引用
收藏
页码:6887 / 6890
页数:4
相关论文
共 7 条
[1]   Identification of noisy dynamical systems with parameter estimation based on Hopfield neural networks [J].
Atencia, Miguel ;
Joya, Gonzalo ;
Sandoval, Francisco .
NEUROCOMPUTING, 2013, 121 :14-24
[2]   The hysteretic Hopfield neural network [J].
Bharitkar, S ;
Mendel, JM .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2000, 11 (04) :879-888
[3]  
GAUTIER M, 2013, P IEEE INT C ROB AUT, P2914
[4]  
Guo Q, 2015, IEEE ASME INT C ADV, P220, DOI 10.1109/AIM.2015.7222535
[5]   An overview of dynamic parameter identification of robots [J].
Wu, Jun ;
Wang, Jinsong ;
You, Zheng .
ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2010, 26 (05) :414-419
[6]  
Yu XL, 2010, LECT NOTES ARTIF INT, V6319, P381, DOI 10.1007/978-3-642-16530-6_45
[7]  
Yuan S, 2016, 2016 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, P2437, DOI 10.1109/ICMA.2016.7558948