Compact and Weakly Compact Multipliers of Locally Compact Quantum Groups

被引:3
作者
Medghalchi, Alireza [1 ]
Mollakhalili, Ahmad [1 ]
机构
[1] Tarbiat Moallem Univ, Dept Math, Kharazmi Univ, 50 Taleghani Ave, Tehran 15618, Iran
关键词
Locally compact quantum groups; (Weakly) compact operators; Amenability; Module homomorphims; 2ND CONJUGATE ALGEBRA; ARENS REGULARITY; MODULE HOMOMORPHISMS; FOURIER ALGEBRA; FINITE-DIMENSIONALITY; CHARACTER AMENABILITY; TOPOLOGICAL CENTERS; OPERATORS; SOCLE; PRODUCTS;
D O I
10.1007/s41980-018-0008-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A locally compact group G is compact if and only if its convolution algebra has a non-zero (weakly) compact multiplier. Dually, G is discrete if and only if its Fourier algebra has a non-zero (weakly) compact multiplier. In addition, G is compact (respectively, amenable) if and only if the second dual of its convolution algebra equipped with the first Arens product has a non-zero (weakly) compact left (respectively, right) multiplier. We prove the non-commutative versions of these results in the case of locally compact quantum groups.
引用
收藏
页码:101 / 136
页数:36
相关论文
共 80 条
[41]   On topological centre problems and SIN quantum groups [J].
Hu, Zhiguo ;
Neufang, Matthias ;
Ruan, Zhong-Jin .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (02) :610-640
[42]   A REPRESENTATION THEOREM FOR LOCALLY COMPACT QUANTUM GROUPS [J].
Junge, Marius ;
Neufang, Matthias ;
Ruan, Zhong-Jin .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2009, 20 (03) :377-400
[43]   Compact Operators in Regular LCQ Groups [J].
Kalantar, Mehrdad .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2014, 57 (03) :546-550
[44]   On character amenability of Banach algebras [J].
Kaniuth, E. ;
Lau, A. T. ;
Pym, J. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 344 (02) :942-955
[45]   THE STRUCTURE OF CERTAIN OPERATOR ALGEBRAS [J].
KAPLANSKY, I .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 70 (MAR) :219-255
[46]   Locally compact quantum groups in the Von Neumann algebraic setting [J].
Kustermans, J ;
Vaes, S .
MATHEMATICA SCANDINAVICA, 2003, 92 (01) :68-92
[47]   Locally compact quantum groups [J].
Kustermans, J ;
Vaes, S .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2000, 33 (06) :837-934
[48]   Locally compact quantum groups in the universal setting [J].
Kustermans, J .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2001, 12 (03) :289-338
[49]   Topological centers of certain dual algebras [J].
Lau, ATM ;
Ulger, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (03) :1191-1212
[50]   The centre of the second conjugate algebra of the Fourier algebra for infinite products of groups [J].
Lau, ATM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2005, 138 :27-39