A TIME-SPLITTING APPROACH TO QUASILINEAR DEGENERATE PARABOLIC STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS

被引:0
作者
Kobayasi, Kazuo [1 ]
Noboriguchi, Dai [1 ]
机构
[1] Waseda Univ, Dept Math Educ & Integrated Arts & Sci, Shinjuku Ku, 1-6-1 Nishi Waseda, Tokyo 1698050, Japan
基金
日本学术振兴会;
关键词
SCALAR CONSERVATION-LAWS; BOUNDARY-CONDITIONS; HYPERBOLIC EQUATIONS; FORMULATION; EXISTENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss the Cauchy problem for a degenerate parabolic-hyperbolic equation with a multiplicative noise. We focus on the existence of a solution. Using nondegenerate smooth approximations, Debussche, Hofmanova and Vovelle [8] proved the existence of a kinetic solution. On the other hand, we propose to construct a sequence of approximations by applying a time splitting method and prove that this converges strongly in L-1 to a kinetic solution. This method will somewhat give us not only a simpler and more direct argument but an improvement over the existence result.
引用
收藏
页码:1139 / 1166
页数:28
相关论文
共 28 条
[1]  
[Anonymous], 1992, ENCY MATH APPL
[2]  
Bauzet C., J EVOL IN PRESS
[3]   A degenerate parabolic-hyperbolic Cauchy problem with a stochastic force [J].
Bauzet, Caroline ;
Vallet, Guy ;
Wittbold, Petra .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2015, 12 (03) :501-533
[4]   The Dirichlet problem for a conservation law with a multiplicative stochastic perturbation [J].
Bauzet, Caroline ;
Vallet, Guy ;
Wittbold, Petra .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (04) :2503-2545
[5]   Entropy solutions for nonlinear degenerate problems [J].
Carrillo, J .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 147 (04) :269-361
[6]   Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations [J].
Chen, GQ ;
Perthame, B .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2003, 20 (04) :645-668
[7]   On Nonlinear Stochastic Balance Laws [J].
Chen, Gui-Qiang ;
Ding, Qian ;
Karlsen, Kenneth H. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 204 (03) :707-743
[8]   Scalar conservation laws with stochastic forcing [J].
Debussche, A. ;
Vovelle, J. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (04) :1014-1042
[9]  
Debussche A., 2014, SCALAR CONSERVATION
[10]   DEGENERATE PARABOLIC STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS: QUASILINEAR CASE [J].
Debussche, Arnaud ;
Hofmanova, Martina ;
Vovelle, Julien .
ANNALS OF PROBABILITY, 2016, 44 (03) :1916-1955