APPROXIMATE SYMMETRIES AND SIMILARITY SOLUTIONS FOR WAVE EQUATIONS ON LIQUID FILMS

被引:2
作者
Jamal, Sameerah [1 ]
Paliathanasis, Andronikos [2 ,3 ]
机构
[1] Univ Witwatersrand, Sch Math, Johannesburg, South Africa
[2] Durban Univ Technol, Inst Syst Sci, ZA-4000 Durban, South Africa
[3] Univ Austral Chile, Inst Ciencias Fis & Matemat, Valdivia 5090000, Chile
关键词
Approximate symmetries; Similarity solutions; Solitary waves; CONSERVATION-LAWS; SOLITARY WAVES;
D O I
10.2298/AADM190523018J
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the exact and approximate Lie symmetries for two equations which describe long waves with small amplitude on liquid films. Specifically, we study the 1+2 Benney-Luke and the 1+1 Benney-Lin equations, both from an exact and approximate perspective. To induce approximate symmetries, we show that terms involving derivatives higher than two are necessarily selected as the perturbation parameters. We construct conservation laws for both equations, and illustrate how the approximate point symmetries can be used to determine approximate similarity solutions.
引用
收藏
页码:349 / 363
页数:15
相关论文
共 37 条
[1]  
Baikov V.A., 1988, Mat. Sb., V136, P435, DOI 10.1070/SM1989v064n02ABEH003318
[2]  
Benney D.J., 1964, Journal of Mathematics and Physics, V43, P309, DOI 10.1002/sapm1964431309
[3]   LONG WAVES ON LIQUID FILMS [J].
BENNEY, DJ .
JOURNAL OF MATHEMATICS AND PHYSICS, 1966, 45 (02) :150-&
[4]   On the Benney-Lin and Kawahara equations [J].
Biagioni, HA ;
Linares, F .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 211 (01) :131-152
[5]   Approximate symmetries of Hamiltonians [J].
Chubb, Christopher T. ;
Flammia, Steven T. .
JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (08)
[6]   APPROXIMATE SYMMETRIES AND APPROXIMATE SOLUTIONS FOR A MULTIDIMENSIONAL LANDAU-GINZBURG EQUATION [J].
EULER, N ;
SHULGA, MW ;
STEEB, WH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (18) :L1095-L1103
[7]   ON APPROXIMATE SYMMETRY AND APPROXIMATE SOLUTIONS OF THE NON-LINEAR WAVE-EQUATION WITH A SMALL PARAMETER [J].
FUSHCHICH, WI ;
SHTELEN, WM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (18) :L887-L890
[8]  
Gandarias ML., 2017, Appl Math Nonlinear Sci, V2, P465, DOI [10.21042/AMNS.2017.2.00037, DOI 10.21042/AMNS.2017.2.00037]
[9]  
Gazizov R.K., 1996, Nonlinear Math. Phys, V3, P96, DOI DOI 10.2991/JNMP.1996.3.1-2.11
[10]   Approximate Noether symmetries [J].
Govinder, KS ;
Heil, TG ;
Uzer, T .
PHYSICS LETTERS A, 1998, 240 (03) :127-131