Parameter identification via neural networks with fast convergence

被引:15
作者
Yadaiah, N [1 ]
Sivakumar, L
Deekshatulu, BL
机构
[1] JNT Univ, Hyderabad 500028, Andhra Pradesh, India
[2] BHEL R&D, Hyderabad 500093, Andhra Pradesh, India
[3] CSSTE AP, Dehra Dun 248001, Uttar Pradesh, India
关键词
artificial neural networks; parameter identification; optimization; supervised learning; performance index;
D O I
10.1016/S0378-4754(99)00114-7
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The parameter identification using artificial neural networks is becoming very popular. In this chapter, the parameters of dynamical system are identified using artificial neural networks. A fast gradient decent technique for the parameter identification of a linear dynamical system has been presented. The following concepts are used for training of neural networks while identifying the system parameters: (1) batch wise training of neural networks; (2) variable learning parameter and; (3) an intelligent check over the rate at which parameters are converging. The complete algorithm is summarized as a flow chart. A detailed mathematical formulation is given. The simulation results and a comparative study with existing method is included. (C) 2000 IMACS/Elsevier Science B.V. All rights reserved.
引用
收藏
页码:157 / 167
页数:11
相关论文
共 50 条
  • [41] Parameter identification and synchronization of uncertain general complex networks via adaptive-impulsive control
    Zhang, Qunjiao
    Luo, Juan
    Wan, Li
    NONLINEAR DYNAMICS, 2013, 71 (1-2) : 353 - 359
  • [42] Parameter identification of PV cell via adaptive compass search algorithm
    Zeng, Fang
    Shu, Hongchun
    Wang, Jingbo
    Chen, Yijun
    Yang, Bo
    ENERGY REPORTS, 2021, 7 : 275 - 282
  • [43] Artificial neural networks and adaptive neuro-fuzzy inference systems for parameter identification of dynamic systems
    Vatankhah, Ramin
    Ghanatian, Mohammad
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 39 (05) : 6145 - 6155
  • [44] Convergence and Rate Analysis of Neural Networks for Sparse Approximation
    Balavoine, Aurele
    Romberg, Justin
    Rozell, Christopher J.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2012, 23 (09) : 1377 - 1389
  • [45] Convergence rate of Artificial Neural Networks for estimation in software
    Rankovic, Dragica
    Rankovic, Nevena
    Ivanovic, Mirjana
    Lazic, Ljubomir
    INFORMATION AND SOFTWARE TECHNOLOGY, 2021, 138
  • [46] GNN-SP: Fast S-Parameter Estimation of Chiplet Interconnect via Graph Neural Network
    Liu, Lihao
    Li, Yunhui
    Lu, Beisi
    Shang, Li
    Yang, Fan
    IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2024, 14 (10): : 1862 - 1871
  • [47] Fractional-Based Approach in Neural Networks for Identification Problem
    Boroomand, Arefeh
    Menhaj, Mohammad Bagher
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 2319 - 2322
  • [48] Neural network algorithm for parameter identification of dynamical systems involving time delays
    Yadaiah, N.
    Deekshatulu, B. L.
    Sivakumar, L.
    Rao, V. Sree Hari
    APPLIED SOFT COMPUTING, 2007, 7 (03) : 1084 - 1091
  • [49] Fast Online Parameter Identification for Current Source Operated PV Modules in DC Microgrids
    Oteafy, Ahmed M. A.
    Abomazid, Abdulrahman
    Monawar, Aram S.
    IEEE ACCESS, 2022, 10 : 11432 - 11442
  • [50] Fast Training of Neural Networks for Image Compression
    Bodyanskiy, Yevgeniy
    Grimm, Paul
    Mashtalir, Sergey
    Vinarski, Vladimir
    ADVANCES IN DATA MINING: APPLICATIONS AND THEORETICAL ASPECTS, 2010, 6171 : 165 - +