Parameter identification via neural networks with fast convergence

被引:15
作者
Yadaiah, N [1 ]
Sivakumar, L
Deekshatulu, BL
机构
[1] JNT Univ, Hyderabad 500028, Andhra Pradesh, India
[2] BHEL R&D, Hyderabad 500093, Andhra Pradesh, India
[3] CSSTE AP, Dehra Dun 248001, Uttar Pradesh, India
关键词
artificial neural networks; parameter identification; optimization; supervised learning; performance index;
D O I
10.1016/S0378-4754(99)00114-7
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The parameter identification using artificial neural networks is becoming very popular. In this chapter, the parameters of dynamical system are identified using artificial neural networks. A fast gradient decent technique for the parameter identification of a linear dynamical system has been presented. The following concepts are used for training of neural networks while identifying the system parameters: (1) batch wise training of neural networks; (2) variable learning parameter and; (3) an intelligent check over the rate at which parameters are converging. The complete algorithm is summarized as a flow chart. A detailed mathematical formulation is given. The simulation results and a comparative study with existing method is included. (C) 2000 IMACS/Elsevier Science B.V. All rights reserved.
引用
收藏
页码:157 / 167
页数:11
相关论文
共 50 条
  • [31] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
    Luo, Hao
    Wang, Yi-Jun
    Ye, Wei
    Zhong, Hai
    Mao, Yi-Yu
    Guo, Ying
    CHINESE PHYSICS B, 2022, 31 (02)
  • [32] Induction Motor Parameter Determination Technique using Artificial Neural Networks
    Karanayil, Baburaj
    Rahman, Muhammed Fazlur
    Grantham, Colin
    ICEMS 2008: PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS, VOLS 1- 8, 2008, : 793 - 798
  • [33] Parameter estimation using compensatory neural networks
    Sinha, M
    Kalra, PK
    Kumar, K
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2000, 25 (2): : 193 - 203
  • [34] Convergence rates of Tikhonov regularization for parameter identification in a Maxwell system
    Feng, Hui
    Jiang, Daijun
    APPLICABLE ANALYSIS, 2015, 94 (02) : 361 - 375
  • [35] Prediction of dressing in grinding operation via neural networks
    D'Addona, Doriana M.
    Matarazzo, Davide
    Teti, Roberto
    de Aguiar, Paulo R.
    Bianchi, Eduardo C.
    Fornaro, Arcangelo
    10TH CIRP CONFERENCE ON INTELLIGENT COMPUTATION IN MANUFACTURING ENGINEERING - CIRP ICME '16, 2017, 62 : 299 - 304
  • [36] Conjugate gradient-based Takagi-Sugeno fuzzy neural network parameter identification and its convergence analysis
    Gao, Tao
    Zhang, Zhen
    Chang, Qin
    Xie, Xuetao
    Ren, Peng
    Wang, Jian
    NEUROCOMPUTING, 2019, 364 : 168 - 181
  • [37] Parameter identification and synchronization of uncertain general complex networks via adaptive-impulsive control
    Qunjiao Zhang
    Juan Luo
    Li Wan
    Nonlinear Dynamics, 2013, 71 : 353 - 359
  • [38] Parameter estimation using compensatory neural networks
    M. Sinha
    P. K. Kalra
    K. Kumar
    Sadhana, 2000, 25 : 193 - 203
  • [39] Identification of State-space Linear Parameter-varying Models Using Artificial Neural Networks
    Bao, Yajie
    Velni, Javad Mohammadpour
    Basina, Aditya
    Shahbakhti, Mahdi
    IFAC PAPERSONLINE, 2020, 53 (02): : 5286 - 5291
  • [40] Parameter Identification of Lorenz System Using RBF Neural Networks with Time-Varying Learning Algorithm
    Ko, Chia-Nan
    Fu, Yu-Yi
    Lee, Cheng-Ming
    Liu, Guan-Yu
    PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL LIFE AND ROBOTICS (AROB 16TH '11), 2011, : 285 - 288