Exponential decay rates for a full von Karman system of dynamic thermoelasticity

被引:32
作者
Benabdallah, A [1 ]
Lasiecka, I
机构
[1] Univ Franche Comte, Lab Calcul Sci, F-25030 Besancon, France
[2] Univ Franche Comte, UMR 6623, F-25030 Besancon, France
[3] Univ Virginia, Dept Math, Charlottesville, VA 22903 USA
基金
美国国家科学基金会;
关键词
full von Karman system; thermoelasticity; uniform decay rates; analytic semigroups;
D O I
10.1006/jdeq.1999.3656
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The full von Karman system accounting for in plane acceleration and thermal effects is considered. The main results of the paper are: (i) the wellposedness of regular and weak (finite energy) solutions, (ii) the uniform decay rates obtained for the energy function in the presence of mechanical damping affecting only the solenoidal part of the velocity field representing the horizontal displacements of the plate. The obtained decay rates are uniform with respect to the parameter gamma which represents the momenta of inertia and whose presence distinguishes the "parabolic-like' from the hyperbolic character of the dynamics. (C) 2000 Academic Press.
引用
收藏
页码:51 / 93
页数:43
相关论文
共 38 条
[1]  
[Anonymous], APPL ANAL
[2]  
[Anonymous], 1957, IZV AKAD NAUK SSSR M
[3]   Exponential stability of a thermoelastic system with free boundary conditions without mechanical dissipation [J].
Avalos, G ;
Lasiecka, I .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (01) :155-182
[4]  
AVALOS G, 1998, C OPTIMAL CONTROL TH, V15, P1
[5]  
Avalos G., 1987, REND ISTIT MAT U TRI, V28, P1
[6]  
AVALOS G, 1995, 1357 IMA
[7]  
BENBDALLAH A, 1998, ELECT J DIFFERENTIAL, V7, P1
[8]  
BENSOUSSAN A., 1993, Representation and Control of Infinite Dimensional Systems, V2
[9]  
BISONGIN E, EXPONENTIAL STABILIT
[10]  
BOHM M, 1994, GLOBAL WELL POSEDNES