A Graph-Laplacian PCA Based on L1/2-Norm Constraint for Characteristic Gene Selection

被引:0
作者
Feng, Chun-Mei [1 ]
Liu, Jin-Xing [1 ]
Gao, Ying-Lian [2 ]
Wang, Juan [1 ]
Wang, Dong-Qin [1 ]
Du, Yong [3 ]
机构
[1] Qufu Nonnal Univ, Sch Informat Sci & Engn, Rizhao 276826, Peoples R China
[2] Qufu Normal Univ, Lib Qufu Normal Univ, Rizhao 276826, Peoples R China
[3] Northeast Agr Univ, Dept Elect & Informat Engn, Harbin 150030, Peoples R China
来源
2016 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM) | 2016年
基金
中国博士后科学基金;
关键词
Principal Component Analysis; L-1/2; norm; Laplacian embed; Characteristic gene selection;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Principal Component Analysis (PCA) as a tool for dimensionality reduction is widely used in many areas. In the area of bioinformatics, the first principal component of PCA is used to select characteristic genes. In order to improve the robustness of PC A-based method, this paper proposes a novel graph-Laplacian PCA algorithm by adopting L-1/2 constraint on error function (L-1/2 gLPCA) for characteristic gene selection. Augmented Lagrange Multipliers (ALM) method is applied to solve the sub-problem. This method gets better results in characteristic gene selection than traditional PCA approach. Meanwhile, the error function based on the L-1/2 norm helps to reduce the influence of outliers and noise. Extensive experimental results on gene expression data sets demonstrate that our method can get higher identification accuracies than others.
引用
收藏
页码:1795 / 1799
页数:5
相关论文
共 17 条
[1]  
[Anonymous], 2012, ACTA AUTOM SINICA, DOI [10.1016/S1874-1029(11)60293-0, DOI 10.1016/S1874-1029(11)60293-0]
[2]  
[Anonymous], 1997, AM MATH SOC, DOI DOI 10.1090/CBMS/092
[3]  
[Anonymous], 2012, P 26 AAAI C
[4]  
Belkin M, 2002, ADV NEUR IN, V14, P585
[5]   Iterative Thresholding for Sparse Approximations [J].
Blumensath, Thomas ;
Davies, Mike E. .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2008, 14 (5-6) :629-654
[6]   Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell [J].
Bonnet, D ;
Dick, JE .
NATURE MEDICINE, 1997, 3 (07) :730-737
[7]   Metagenes and molecular pattern discovery using matrix factorization [J].
Brunet, JP ;
Tamayo, P ;
Golub, TR ;
Mesirov, JP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (12) :4164-4169
[8]  
Ding C., 2004, P 21 INT C MACH LEAR, P29, DOI DOI 10.1145/1015330.1015408
[9]   DE-NOISING BY SOFT-THRESHOLDING [J].
DONOHO, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (03) :613-627
[10]   A Simple Review of Sparse Principal Components Analysis [J].
Feng, Chun-Mei ;
Gao, Ying-Lian ;
Liu, Jin-Xing ;
Zheng, Chun-Hou ;
Li, Sheng-Jun ;
Wang, Dong .
INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2016, PT II, 2016, 9772 :374-383