NIR-responsive carbon dots for efficient photothermal cancer therapy at low power densities

被引:207
作者
Geng, Bijiang [1 ]
Yang, Dewen [1 ]
Pan, Dengyu [1 ]
Wang, Liang [1 ]
Zheng, Fengfeng [1 ]
Shen, Wenwen [1 ]
Zhang, Chen [1 ]
Li, Xiaokai [2 ]
机构
[1] Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Phys Educ Coll, Shanghai 200444, Peoples R China
关键词
GRAPHENE-QUANTUM DOTS; PHOTODYNAMIC THERAPY; ABSORPTION-BANDS; ONE-POT; NANODOTS; OXIDE; DYE; PHOTOLUMINESCENCE; NANOPARTICLES; FLUORESCENCE;
D O I
10.1016/j.carbon.2018.03.084
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon dots ( CDs) with unique optical properties are a stable and highly biocompatible fluorescent material offering enormous application potential in optical imaging and photothermal cancer therapy (PTT). However, the low photothermal conversion efficiency and the high power density still impede the development of CDs in PTT. Herein, the nitrogen and oxygen co- doped CDs (N-O-CDs) with strong absorbance in the near infrared (NIR) region were prepared from 1,3,6-trinitropyrene (TNP) and N-containing polymer of branched polyethylenimine (BPEI) via a one-step molecular fusion route. The asprepared black N-O-CDs with high photostability and superb biocompatibility can be utilized not only as a new fluorescence imaging agent but also as an excellent PTT agent in vivo. The structure, optical properties, bioimaging, photothermal effect in vitro, and therapeutic efficiency in vivo of the N-O-CDs are investigated. The low power density (0.8 Wcm(-2)) and high photothermal conversion efficiency (eta = 38.3%) facilitate N-O-CDs to act as an ideal theranostic agent for fluorescence imaging and photothermal therapy in vitro and in vivo. This work highlights CDs as an excellent candidate for efficient cancer therapy. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:153 / 162
页数:10
相关论文
共 63 条
[1]   A Real-Time Surface Enhanced Raman Spectroscopy Study of Plasmonic Photothermal Cell Death Using Targeted Gold Nanoparticles [J].
Aioub, Mena ;
El-Sayed, Mostafa A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (04) :1258-1264
[2]   Photoluminescence-Tunable Carbon Nanodots: Surface-State Energy-Gap Tuning [J].
Bao, Lei ;
Liu, Cui ;
Zhang, Zhi-Ling ;
Pang, Dai-Wen .
ADVANCED MATERIALS, 2015, 27 (10) :1663-+
[3]   Electrochemical Tuning of Luminescent Carbon Nanodots: From Preparation to Luminescence Mechanism [J].
Bao, Lei ;
Zhang, Zhi-Ling ;
Tian, Zhi-Quan ;
Zhang, Li ;
Liu, Cui ;
Lin, Yi ;
Qi, Baoping ;
Pang, Dai-Wen .
ADVANCED MATERIALS, 2011, 23 (48) :5801-5806
[4]   The photoluminescence, drug delivery and imaging properties of multifunctional Eu3+/Gd3+ dual-doped hydroxyapatite nanorods [J].
Chen, Feng ;
Huang, Peng ;
Zhu, Ying-Jie ;
Wu, Jin ;
Zhang, Chun-Lei ;
Cui, Da-Xiang .
BIOMATERIALS, 2011, 32 (34) :9031-9039
[5]   Near-infrared dye bound albumin with separated imaging and therapy wavelength channels for imaging-guided photothermal therapy [J].
Chen, Qian ;
Wang, Chao ;
Zhan, Zhixiong ;
He, Weiwei ;
Cheng, Zhenping ;
Li, Youyong ;
Liu, Zhuang .
BIOMATERIALS, 2014, 35 (28) :8206-8214
[6]   PEGylated Micelle Nanoparticles Encapsulating a Non-Fluorescent Near-Infrared Organic Dye as a Safe and Highly-Effective Photothermal Agent for In Vivo Cancer Therapy [J].
Cheng, Liang ;
He, Weiwei ;
Gong, Hua ;
Wang, Chao ;
Chen, Qian ;
Cheng, Zhengping ;
Liu, Zhuang .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (47) :5893-5902
[7]   Renal clearance of quantum dots [J].
Choi, Hak Soo ;
Liu, Wenhao ;
Misra, Preeti ;
Tanaka, Eiichi ;
Zimmer, John P. ;
Ipe, Binil Itty ;
Bawendi, Moungi G. ;
Frangioni, John V. .
NATURE BIOTECHNOLOGY, 2007, 25 (10) :1165-1170
[8]   Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid [J].
Dong, Yongqiang ;
Shao, Jingwei ;
Chen, Congqiang ;
Li, Hao ;
Wang, Ruixue ;
Chi, Yuwu ;
Lin, Xiaomei ;
Chen, Guonan .
CARBON, 2012, 50 (12) :4738-4743
[9]   Photodynamic Graphene Quantum Dot: Reduction Condition Regulated Photoactivity and Size Dependent Efficacy [J].
Du, Dou ;
Wang, Kun ;
Wen, Ya ;
Li, Yan ;
Li, Yong Y. .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (05) :3287-3294
[10]   Evaluation of the Toxicity of Intravenous Delivery of Auroshell Particles (Gold-Silica Nanoshells) [J].
Gad, Shayne C. ;
Sharp, Kelly L. ;
Montgomery, Charles ;
Payne, J. Donald ;
Goodrich, Glenn P. .
INTERNATIONAL JOURNAL OF TOXICOLOGY, 2012, 31 (06) :584-594