Effects of cold electron number density variation on whistler-mode wave growth

被引:1
作者
Tang, R. [1 ,2 ,3 ]
Summers, D. [3 ]
Deng, X. [1 ]
机构
[1] Nanchang Univ, Inst Space Sci & Technol, Nanchang 330031, Peoples R China
[2] Chinese Acad Sci, State Key Lab Space Weather, Beijing 100190, Peoples R China
[3] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
Space plasma physics; wave-particle interactions; FLUXES;
D O I
10.5194/angeo-32-889-2014
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We examine how the growth of magnetospheric whistler-mode waves depends on the cold (background) electron number density N-0. The analysis is carried out by varying the cold-plasma parameter a = (electron gyrofrequency)(2)/(electron plasma frequency) 2 which is proportional to 1/N-0. For given values of the thermal anisotropy A(T) and the ratio N-h/N-0, where N-h is the hot (energetic) electron number density, we find that, as N-0 decreases, the maximum values of the linear and nonlinear growth rates decrease and the threshold wave amplitude for nonlinear growth increases. Generally, as N-0 decreases, the region of (N-h/N-0, A(T))-parameter space in which nonlinear wave growth can occur becomes more limited; that is, as N-0 decreases, the parameter region permitting nonlinear wave growth shifts to the top right of (N-h/N-0, A(T)) space characterized by larger N-h/N-0 values and larger A(T) values. The results have implications for choosing input parameters for full-scale particle simulations and also in the analysis of whistler-mode chorus data.
引用
收藏
页码:889 / 898
页数:10
相关论文
共 29 条
[1]   NON-CONVECTIVE AND CONVECTIVE ELECTRON-CYCLOTRON HARMONIC INSTABILITIES [J].
ASHOURABDALLA, M ;
KENNEL, CF .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1978, 83 (NA4) :1531-1543
[2]   UNSTABLE ELECTROSTATIC PLASMA WAVES PROPAGATING PERPENDICULAR TO A MAGNETIC FIELD [J].
DORY, RA ;
GUEST, GE ;
HARRIS, EG .
PHYSICAL REVIEW LETTERS, 1965, 14 (05) :131-&
[3]   Full particle simulation of whistler-mode rising chorus emissions in the magnetosphere [J].
Hikishima, M. ;
Yagitani, S. ;
Omura, Y. ;
Nagano, I. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2009, 114
[4]   Microburst precipitation of energetic electrons associated with chorus wave generation [J].
Hikishima, Mitsuru ;
Omura, Yoshiharu ;
Summers, Danny .
GEOPHYSICAL RESEARCH LETTERS, 2010, 37
[5]   Amplitude dependence of frequency sweep rates of whistler mode chorus emissions [J].
Katoh, Yuto ;
Omura, Yoshiharu .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2011, 116
[6]   LIMIT ON STABLY TRAPPED PARTICLE FLUXES [J].
KENNEL, CF ;
PETSCHEK, HE .
JOURNAL OF GEOPHYSICAL RESEARCH, 1966, 71 (01) :1-+
[7]   Observations of relativistic electron microbursts in association with VLF chorus [J].
Lorentzen, KR ;
Blake, JB ;
Inan, US ;
Bortnik, J .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2001, 106 (A4) :6017-6027
[8]   Electron radiation belts of the solar system [J].
Mauk, B. H. ;
Fox, N. J. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2010, 115
[9]   Evidence for chorus-driven electron acceleration to relativistic energies from a survey of geomagnetically disturbed periods [J].
Meredith, NP ;
Cain, M ;
Horne, RB ;
Thorne, RM ;
Summers, D ;
Anderson, RR .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2003, 108 (A6)
[10]   Resonant scattering of plasma sheet electrons by whistler-mode chorus: Contribution to diffuse auroral precipitation [J].
Ni, Binbin ;
Thorne, Richard M. ;
Shprits, Yuri Y. ;
Bortnik, Jacob .
GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (11)