Congruences involving generalized central trinomial coefficients

被引:48
作者
Sun Zhi-Wei [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
congruences; central trinomial coefficients; Motzkin numbers; central Delannoy numbers;
D O I
10.1007/s11425-014-4809-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For integers b and c the generalized central trinomial coefficient T (n) (b,c) denotes the coefficient of x(n) in the expansion of (x(2) + bx + c)(n) . Those T-n = T-n (1,1) (n = 0,1,2, ... ) are the usual central trinomial coefficients, and T-n (3,2) coincides with the Delannoy number D-u = Sigma(n)(k=0) ((n)(k)) ((n+k)(k)) in combinatorics. We investigate congruences involving generalized central trinomial coefficients systematically. Here are some typical results: For each n = 1, 2, 3, ... , we have Sigma(n-1)(k=0) (2k+1)T-k(b,c)(2)(b(2)-4c)(n-1-k) equivalent to 0 (mod n(2)) and in particular n(2) vertical bar Sigma(n-1)(k=0)(2k+1)D-k(2); if p is an odd prime then Sigma(p-1)(k=0) T-k(2) equivalent to (-1/p) (mod p) and Sigma(p-1)(k=0) D-k(2) equivalent to (2/p) (mod p), where (-) denotes the Legendre symbol. We also raise several conjectures some of which involve parameters in the representations of primes by certain binary quadratic forms.
引用
收藏
页码:1375 / 1400
页数:26
相关论文
共 22 条
[1]  
Andrews G E, 1990, J AM MATH SOC, V3, P653
[2]   LATTICE GAS GENERALIZATION OF THE HARD HEXAGON MODEL .3. Q-TRINOMIAL COEFFICIENTS [J].
ANDREWS, GE ;
BAXTER, RJ .
JOURNAL OF STATISTICAL PHYSICS, 1987, 47 (3-4) :297-330
[3]  
Andrews George E, 1999, Encyclopedia of Mathematics and its Applications, V71, DOI DOI 10.1017/CBO9781107325937
[4]  
[Anonymous], 1998, Gauss and Jacobi Sums
[5]  
[Anonymous], 1972, COMBINATORIAL IDENTI
[6]  
[Anonymous], 1989, A Wiley-Interscience Publication
[7]  
Cao H Q, 2010, ARXIV10063025V2
[8]   A note on lattice chains and Delannoy numbers [J].
Caughman, John S. ;
Haithcock, Clifford R. ;
Veerman, J. J. P. .
DISCRETE MATHEMATICS, 2008, 308 (12) :2623-2628
[9]  
Graham Ronald L., 1994, Concrete Mathematics: A Foundation For Computer Science, V2nd
[10]  
Granville A, 2004, INTEGERS, V4