On the Three-Dimensional Fractional-Order Henon Map with Lorenz-Like Attractors

被引:15
作者
Khennaoui, Amina-Aicha [1 ]
Ouannas, Adel [2 ]
Odibat, Zaid [3 ]
Viet-Thanh Pham [4 ,5 ]
Grassi, Giuseppe [6 ]
机构
[1] Univ Larbi Ben Mhidi, Lab Dynam Syst & Control, Oum El Bouaghi, Algeria
[2] Univ Larbi Tebessi, Lab Math Informat & Syst LAMIS, Tebessa 12002, Algeria
[3] Al Balqa Appl Univ, Dept Math, Fac Sci, Salt 19117, Jordan
[4] Phenikaa Univ, Phenikaa Inst Adv Study PIAS, Fac Elect & Elect Engn, Hanoi 100000, Vietnam
[5] A&A Green Phoenix Grp, Phenikaa Res & Technol Inst PRATI, 167 Hoang Ngan, Hanoi 100000, Vietnam
[6] Univ Salento, Dipartimento Ingn Innovaz, I-73100 Lecce, Italy
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2020年 / 30卷 / 11期
关键词
Fractional discrete-time calculus; Caputo-like difference operator; chaos; Henon-like map; control; synchronization; CHAOS SYNCHRONIZATION; STABILITY; COEXISTENCE; SYSTEMS; DIFFEOMORPHISMS; BIFURCATIONS; CALCULUS; SCHEME;
D O I
10.1142/S021812742050217X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A three-dimensional (3D) Henon map of fractional order is proposed in this paper. The dynamics of the suggested map are numerically illustrated for different fractional orders using phase plots and bifurcation diagrams. Lorenz-like attractors for the considered map are realized. Then, using the linear fractional-order systems stability criterion, a controller is proposed to globally stabilize the fractional-order Henon map. Furthermore, synchronization control scheme has been designed to exhibit a synchronization behavior between a given 2D fractional-order chaotic map and the 3D fractional-order Henon map. Numerical simulations are also performed to verify the main results of the study.
引用
收藏
页数:16
相关论文
共 52 条
  • [1] ABDELJAWAD T, 2013, DISCRETE DYN NAT SOC
  • [2] On Riemann and Caputo fractional differences
    Abdeljawad, Thabet
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) : 1602 - 1611
  • [3] On the asymptotic stability of linear system of fractional-order difference equations
    Abu-Saris, Raghib
    Al-Mdallal, Qasem
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (03) : 613 - 629
  • [4] Synchronization of non-identical chaotic systems:: an exponential dichotomies approach
    Acosta, A
    García, P
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (43): : 9143 - 9151
  • [5] Principles of delta fractional calculus on time scales and inequalities
    Anastassiou, George A.
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (3-4) : 556 - 566
  • [6] Atici FM, 2009, ELECTRON J QUAL THEO
  • [7] Stability analysis of Caputo-like discrete fractional systems
    Baleanu, Dumitru
    Wu, Guo-Cheng
    Bai, Yun-Ru
    Chen, Fu-Lai
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 48 : 520 - 530
  • [8] The Co-existence of Different Synchronization Types in Fractional-order Discrete-time Chaotic Systems with Non-identical Dimensions and Orders
    Bendoukha, Samir
    Ouannas, Adel
    Wang, Xiong
    Khennaoui, Amina-Aicha
    Viet-Thanh Pham
    Grassi, Giuseppe
    Van Van Huynh
    [J]. ENTROPY, 2018, 20 (09)
  • [9] ON EXPLICIT STABILITY CONDITIONS FOR A LINEAR FRACTIONAL DIFFERENCE SYSTEM
    Cermak, Jan
    Gyori, Istvan
    Nechvatal, Ludek
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (03) : 651 - 672
  • [10] Existence Results for Nonlinear Fractional Difference Equation
    Chen, Fulai
    Luo, Xiannan
    Zhou, Yong
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2011,