The function of the [4Fe-4S] clusters and FAD in bacterial and archaeal adenylylsulfate reductases -: Evidence for flavin-catalyzed reduction of adenosine 5′-phosphosulfate

被引:38
作者
Fritz, G
Büchert, T
Kroneck, PMH
机构
[1] Univ Zurich, Inst Biochem, CH-8051 Zurich, Switzerland
[2] Univ Konstanz, Math Naturwissensch Sekt, Fachbereich Biol, D-78457 Constance, Germany
关键词
D O I
10.1074/jbc.M203397200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The iron-sulfur flavoenzyme adenylylsulfate (adenosine 5'-phosphosulfate, APS) reductase catalyzes reversibly the 2-electron reduction of APS to sulfite and AMP, a key step in the biological sulfur cycle. APS reductase from one archaea and three different bacteria has been purified, and the molecular and catalytic properties have been characterized. The EPR parameters and redox potentials (-60 and -520 mV versus NHE) have been assigned to the two [4Fe-4S] clusters I and II observed in the three-dimensional structure of the enzyme from Archaeoglobus fulgidus (Fritz, G., Roth, A., Schiffer, A., Buchert, T., Bourenkov, G., Bartunik, H. D., Huber, H., Stetter, K. O., Kroneck, P. M. H., and Ermler, U. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 1836-1841). Sulfite binds to FAD to form a covalent FAD N(5)-sulfite adduct with characteristic UV/visible spectra, in accordance with the three-dimensional structure of crystalline enzyme soaked with APS. UV/visible monitored titrations reveal that the substrates AMP and APS dock closely to the FAD cofactor. These results clearly document that FAD is the site of the 2-electron reduction of APS to sulfite and AMP. Reaction of APS reductase enzyme with sulfite and AMP leads to partial reduction of the [4Fe-4S] centers and formation of the anionic FAD semiquinone. Thus, both [4Fe-4S] clusters function in electron transfer and guide two single electrons from the protein surface to the FAD catalytic site.
引用
收藏
页码:26066 / 26073
页数:8
相关论文
共 36 条
[1]   STUDY ON REACTION-MECHANISM OF ADENOSINE 5'-PHOSPHOSULFATE REDUCTASE FROM THIOBACILLUS-THIOPARUS, AN IRON-SULFUR FLAVOPROTEIN [J].
ADACHI, K ;
SUZUKI, I .
CANADIAN JOURNAL OF BIOCHEMISTRY, 1977, 55 (01) :91-98
[2]   Iron-sulfur clusters: Nature's modular, multipurpose structures [J].
Beinert, H ;
Holm, RH ;
Munck, E .
SCIENCE, 1997, 277 (5326) :653-659
[3]  
Beinert H, 1978, Methods Enzymol, V54, P111
[4]   Alteration of the reduction potential of the [4Fe-4S]2+/+ cluster of Azotobacter vinelandii ferredoxin I [J].
Chen, KS ;
Tilley, GJ ;
Sridhar, V ;
Prasad, GS ;
Stout, CD ;
Armstrong, FA ;
Burgess, BK .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (51) :36479-36487
[5]  
COOPER BP, 1979, Z NATURFORSCH C, V34, P346
[6]  
Cornish-Bowden A., 1979, FUNDAMENTALS ENZYME
[7]   Alteration of the midpoint potential and catalytic activity of the Rieske iron-sulfur protein by changes of amino acids forming hydrogen bonds to the iron-sulfur cluster [J].
Denke, E ;
Merbitz-Zahradnik, T ;
Hatzfeld, OM ;
Snyder, CH ;
Link, TA ;
Trumpower, BL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (15) :9085-9093
[8]  
Dutton P L, 1978, Methods Enzymol, V54, P411
[9]   Adenylylsulfate reductases from archaea and bacteria are 1:1 αβ-heterodimeric iron-sulfur flavoenzymes -: high similarity of molecular properties emphasizes their central role in sulfur metabolism [J].
Fritz, G ;
Büchert, T ;
Huber, H ;
Stetter, KO ;
Kroneck, PMH .
FEBS LETTERS, 2000, 473 (01) :63-66
[10]   Structure of adenylylsulfate reductase from the hyperthermophilic Archaeoglobus fulgidus at 1.6-A resolution [J].
Fritz, G ;
Roth, A ;
Schiffer, A ;
Büchert, T ;
Bourenkov, G ;
Bartunik, HD ;
Huber, H ;
Stetter, KO ;
Kroneck, PMH ;
Ermler, U .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (04) :1836-1841