On-Line Building Energy Optimization Using Deep Reinforcement Learning

被引:391
|
作者
Mocanu, Elena [1 ,2 ]
Mocanu, Decebal Constantin [3 ]
Nguyen, Phuong H. [1 ]
Liotta, Antonio [4 ]
Webber, Michael E. [5 ]
Gibescu, Madeleine [1 ]
Slootweg, J. G. [1 ]
机构
[1] Eindhoven Univ Technol, Dept Elect Engn, NL-5600 MB Eindhoven, Netherlands
[2] Eindhoven Univ Technol, Dept Mech Engn, NL-5600 MB Eindhoven, Netherlands
[3] Eindhoven Univ Technol, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
[4] Univ Derby, Data Sci Ctr, Derby DE1 3HD, England
[5] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA
基金
欧盟地平线“2020”;
关键词
Deep reinforcement learning; demand response; deep neural networks; smart grid; strategic optimization; PREDICTION;
D O I
10.1109/TSG.2018.2834219
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Unprecedented high volumes of data are becoming available with the growth of the advanced metering infrastructure. These arc expected to benefit planning and operation of the future power systems and to help customers transition from a passive to an active role. In this paper, we explore for the first time in the smart grid context the benefits of using deep reinforcement learning, a hybrid type of methods that combines reinforcement learning with deep learning, to perform on-line optimization of schedules for building energy management systems. The learning procedure was explored using two methods, Deep Q-learning and deep policy gradient, both of which have been extended to perform multiple actions simultaneously. The proposed approach was validated on the large-scale Pecan Street Inc. database. This highly dimensional database includes information about photovoltaic power generation, electric vehicles and buildings appliances. Moreover, these on-line energy scheduling strategies could be used to provide real-time feedback to consumers to encourage more efficient use of electricity.
引用
收藏
页码:3698 / 3708
页数:11
相关论文
共 50 条
  • [21] Optimization of the Operation and Maintenance of renewable energy systems by Deep Reinforcement Learning
    Pinciroli, Luca
    Baraldi, Piero
    Ballabio, Guido
    Compare, Michele
    Zio, Enrico
    RENEWABLE ENERGY, 2022, 183 : 752 - 763
  • [22] Energy Efficiency Optimization in Heterogeneous Networks Based on Deep Reinforcement Learning
    Shi, Daoping
    Tian, Feng
    Wu, Shengchen
    2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2020,
  • [23] Optimization of Apparel Supply Chain Using Deep Reinforcement Learning
    Chong, Ji Won
    Kim, Wooju
    Hong, Jun Seok
    IEEE ACCESS, 2022, 10 : 100367 - 100375
  • [24] Interterminal Truck Routing Optimization Using Deep Reinforcement Learning
    Adi, Taufik Nur
    Iskandar, Yelita Anggiane
    Bae, Hyerim
    SENSORS, 2020, 20 (20) : 1 - 20
  • [25] Fluid dynamic control and optimization using deep reinforcement learning
    Innyoung Kim
    Donghyun You
    JMST Advances, 2024, 6 (1) : 61 - 65
  • [26] Learning Global Optimization by Deep Reinforcement Learning
    da Silva Filho, Moesio Wenceslau
    Barbosa, Gabriel A.
    Miranda, Pericles B. C.
    INTELLIGENT SYSTEMS, PT II, 2022, 13654 : 417 - 433
  • [27] Deep reinforcement learning control for non-stationary building energy management
    Naug, Avisek
    Quinones-Grueiro, Marcos
    Biswas, Gautam
    ENERGY AND BUILDINGS, 2022, 277
  • [28] Real-time energy flexibility optimization of grid-connected smart building communities with deep reinforcement learning
    Faghri, Safoura
    Tahami, Hamed
    Amini, Reza
    Katiraee, Haniyeh
    Langeroudi, Amir Saman Godazi
    Alinejad, Mahyar
    Nejati, Mobin Ghasempour
    SUSTAINABLE CITIES AND SOCIETY, 2025, 119
  • [29] Energy Management and Optimization of Multi-energy Grid Based on Deep Reinforcement Learning
    Liu J.
    Chen J.
    Wang X.
    Zeng J.
    Huang Q.
    Dianwang Jishu/Power System Technology, 2020, 44 (10): : 3794 - 3803
  • [30] Indoor energy-saving strategy optimization based on deep reinforcement learning and DDPG algorithm
    Wan, Yan
    Zhai, Yujia
    Cui, Can
    Song, Dexuan
    COMPUTING, 2025, 107 (01)