Assessment of PLGA-PEG-PLGA Copolymer Hydrogel for Sustained Drug Delivery in the Ear

被引:38
|
作者
Feng, Liang [1 ]
Ward, Jonette A. [2 ]
Li, S. Kevin [1 ]
Tolia, Gaurav [1 ]
Hao, Jinsong [3 ]
Choo, Daniel I. [2 ,4 ]
机构
[1] Univ Cincinnati, Coll Pharm, Div Pharmaceut Sci, Cincinnati, OH 45267 USA
[2] Cincinnati Childrens Hosp Med Ctr, Ear & Hearing Ctr, Cincinnati, OH 45267 USA
[3] Marshall Univ, Sch Pharm, Dept Pharmaceut Sci & Res, Huntington, WV 25755 USA
[4] Univ Cincinnati, Coll Med, Dept Otolaryngol, Cincinnati, OH 45267 USA
关键词
Auditory brainstem response; Cidofovir; Drug delivery; Ear; Hydrogel; Sustained release; IN-VITRO EVALUATION; RELEASE; DEXAMETHASONE; DISEASE; SYSTEMS; MODEL; WATER;
D O I
10.2174/1567201811666140118224616
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Temperature sensitive copolymer systems were previously studied using modified diffusion cells in vitro for intratympanic injection, and the PLGA-PEG-PLGA copolymer systems were found to provide sustained drug delivery for several days. The objectives of the present study were to assess the safety of PLGA-PEG-PLGA copolymers in intratympanic injection in guinea pigs in vivo and to determine the effects of additives glycerol and poloxamer in PLGA-PEG-PLGA upon drug release in the diffusion cells in vitro for sustained inner ear drug delivery. In the experiments, the safety of PLGA-PEG-PLGA copolymers to inner ear was evaluated using auditory brainstem response (ABR). The effects of the additives upon drug release from PLGA-PEG-PLGA hydrogel were investigated in the modified Franz diffusion cells in vitro with cidofovir as the model drug. The phase transition temperatures of the PLGA-PEG-PLGA copolymers in the presence of the additives were also determined. In the ABR safety study, the PLGA-PEG-PLGA copolymer alone did not affect hearing when delivered at 0.05-mL dose but caused hearing loss after 0.1-mL injection. In the drug release study, the incorporation of the bioadhesive additive, poloxamer, in the PLGA-PEG-PLGA formulations was found to decrease the rate of drug release whereas the increase in the concentration of the humectant additive, glycerol, provided the opposite effect. In summary, the PLGA-PEG-PLGA copolymer did not show toxicity to the inner ear at the 0.05-mL dose and could provide sustained release that could be controlled by using the additives for inner ear applications.
引用
收藏
页码:279 / 286
页数:8
相关论文
共 50 条
  • [1] PLGA-PEG-PLGA hydrogel for ocular drug delivery of dexamethasone acetate
    Gao, Yuan
    Sun, Yan
    Ren, Fuzheng
    Gao, Shen
    DRUG DEVELOPMENT AND INDUSTRIAL PHARMACY, 2010, 36 (10) : 1131 - 1138
  • [2] Preparation and analysis of a sustained drug delivery system by PLGA-PEG-PLGA triblock copolymers
    Khodaverdi, Elham
    Hadizadeh, Farzin
    Tekie, Farnaz Sadat Mirzazadeh
    Jalali, Afshin
    Mohajeri, Seyed Ahmad
    Ganji, Fariba
    POLYMER BULLETIN, 2012, 69 (04) : 429 - 438
  • [3] A thermo-sensitive PLGA-PEG-PLGA hydrogel for sustained release of docetaxel
    Gao, Yuan
    Ren, Fuzheng
    Ding, Baoyue
    Sun, Ningyun
    Liu, Xiang
    Ding, Xueying
    Gao, Shen
    JOURNAL OF DRUG TARGETING, 2011, 19 (07) : 516 - 527
  • [4] The thermogelling PLGA-PEG-PLGA block copolymer as a sustained release matrix of doxorubicin
    Yu, Lin
    Ci, Tianyuan
    Zhou, Shuchun
    Zeng, Wenjiao
    Ding, Jiandong
    BIOMATERIALS SCIENCE, 2013, 1 (04) : 411 - 420
  • [5] Preparation and Investigation of Sustained Drug Delivery Systems Using an Injectable, Thermosensitive, In Situ Forming Hydrogel Composed of PLGA-PEG-PLGA
    Khodaverdi, Elham
    Tekie, Farnaz Sadat Mirzazadeh
    Mohajeri, Seyed Ahmad
    Ganji, Fariba
    Zohuri, Gholamhossein
    Hadizadeh, Farzin
    AAPS PHARMSCITECH, 2012, 13 (02): : 590 - 600
  • [6] Biodegradable Thermosensitive PLGA-PEG-PLGA Polymer for Non-irritating and Sustained Ophthalmic Drug Delivery
    Pui Shan Chan
    Jia Wen Xian
    Qingqing Li
    Chun Wai Chan
    Sharon S. Y. Leung
    Kenneth K. W. To
    The AAPS Journal, 21
  • [7] Biodegradable Thermosensitive PLGA-PEG-PLGA Polymer for Non-irritating and Sustained Ophthalmic Drug Delivery
    Chan, Pui Shan
    Xian, Jia Wen
    Li, Qingqing
    Chan, Chun Wai
    Leung, Sharon S. Y.
    To, Kenneth K. W.
    AAPS JOURNAL, 2019, 21 (04):
  • [8] Intracranial In Situ Thermosensitive Hydrogel Delivery of Temozolomide Accomplished by PLGA-PEG-PLGA Triblock Copolymer Blending for GBM Treatment
    Gu, Weinan
    Fan, Ranran
    Quan, Jingnan
    Cheng, Yi
    Wang, Shanshan
    Zhang, Hui
    Zheng, Aiping
    Song, Shenghan
    POLYMERS, 2022, 14 (16)
  • [9] Synthesis, characterization and drug release of temperature-sensitive PLGA-PEG-PLGA hydrogel
    Lin Hao
    Tian Hua-Yu
    Sun Jing-Ru
    Zhuang Xiu-Li
    Chen Xue-Si
    Li Yue-Sheng
    Jing Xia-Bin
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2006, 27 (07): : 1385 - 1388
  • [10] Synthesis, characterization and drug release of temperature-sensitive PLGA-PEG-PLGA hydrogel
    Lin, Hao
    Tian, Hua-Yu
    Sun, Jing-Ru
    Zhuang, Xiu-Li
    Chen, Xue-Si
    Li, Yue-Sheng
    Jing, Xia-Bin
    Gaodeng Xuexiao Huaxue Xuebao/Chemical Journal of Chinese Universities, 2006, 27 (07): : 1385 - 1388