Real time digital signal processing implementation for an APD-based PET scanner with phoswich detectors

被引:34
作者
Fontaine, R. [1 ]
Tetrault, M. -A.
Belanger, F.
Viscogliosi, N.
Himmich, R.
Michaud, J. -B.
Robert, S.
Leroux, J. -D.
Semmaoui, H.
Berard, P.
Cadorette, J.
Pepin, C. M.
Lecomte, R.
机构
[1] Univ Sherbrooke, Dept Elect & Comp Engn, Sherbrooke, PQ J1K 2R1, Canada
[2] Univ Sherbrooke, Dept Med Nucl & Radiobiol, Sherbrooke Mol Imaging Ctr, Sherbrooke, PQ J1H 5N4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
avalanche photodiodes (APDs); field programmable; gate array (FPGA); Positron Emission Tomography (PET); real time digital signal processing;
D O I
10.1109/TNS.2006.875441
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recent progress in advanced digital signal processing provides an opportunity to expand the computation power required for real time extraction of event characteristics in avalanche photodiode (APD)-based Positron Emission Tomography (PET) scanners. These developments are made possible by a highly parallel data acquisition (DAQ) system based on an integrated analog front-end and a high-speed fully digital signal processing section that directly samples the output of each preamplifier with a free-running, off-the-shelf, 45-MHz analog-to-digital converter that feeds the sampled data into a field programmable gate array (FPGA) VirtexII PRO from Xilinx. This FPGA features similar to 31000 logic cells and two PowerPC processors, which allows up to 64 channels to be processed simultaneously. Each channel has its own digital signal processing chain including a trigger, a baseline restorer and a timestamp algorithm. Various timestamp algorithms have been tested so far, achieving a coincidence timing resolution of 3.2-ns full-width at half-maximum (FWHM) for APD coupled to Lutetium Oxyorthosilicate (APD-LSO) and 11.4-ns FWHM for APD coupled to Bismuth Germanium Oxide (APD-BGO) detectors, respectively. Channels are then multiplexed into a DSP processor from Texas Instruments for crystal identification by an ARMAX recursive algorithm borrowed from identification and vector quantization theory. The system can sustain an event rate of 10 000 events/s/channel without electronic dead time.
引用
收藏
页码:784 / 788
页数:5
相关论文
共 26 条
  • [1] Study of spatial resolution and depth of interaction of APD-based PET detector modules using light sharing schemes
    Bruyndonckx, P
    Léonard, S
    Liu, JG
    Tavernier, S
    Szupryczynski, P
    Fedorov, A
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2003, 50 (05) : 1415 - 1419
  • [2] MONTE-CARLO OPTIMIZATION OF DEPTH-OF-INTERACTION RESOLUTION IN PET CRYSTALS
    DEVOL, TA
    MOSES, WW
    DERENZO, SE
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1993, 40 (02) : 170 - 174
  • [3] Performance measurements of a depth-encoding PET detector module based on position-sensitive avalanche photodiode read-out
    Dokhale, PA
    Silverman, RW
    Shah, KS
    Grazioso, R
    Farrell, R
    Glodo, J
    McClish, MA
    Entine, G
    Tran, VH
    Cherry, SR
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2004, 49 (18) : 4293 - 4304
  • [4] FONTAINE R, 2004, IEEE NSS MIC C ROM I
  • [5] GERSHO A, 1992, VECTOR QUANTIZATION, P732
  • [6] A PRELIMINARY EVALUATION OF A DUAL CRYSTAL POSITRON CAMERA
    HOLTE, S
    OSTERTAG, H
    KESSELBERG, M
    [J]. JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 1987, 11 (04) : 691 - 697
  • [7] INADAMA N, 2001, P IEEE NSS MIC, pM2
  • [8] LECOMTE R, 1986, J NUCL MED, V27, P974
  • [9] Initial results from the Sherbrooke avalanche photodiode positron tomograph
    Lecomte, R
    Cadorette, J
    Rodrigue, S
    Lapointe, D
    Rouleau, D
    Bentourkia, M
    Yao, R
    Msaki, P
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1996, 43 (03) : 1952 - 1957
  • [10] LECOMTE R, 1999, P 1998 IEEE NSS MIC, V3, P1445