Hierarchical quadratic programming: Fast online humanoid-robot motion generation

被引:376
作者
Escande, Adrien [1 ]
Mansard, Nicolas [2 ]
Wieber, Pierre-Brice [3 ]
机构
[1] JRL CNRS AIST, Tsukuba, Ibaraki, Japan
[2] Univ Toulouse, LAAS CNRS, F-31000 Toulouse, France
[3] INRIA Grenoble, Grenoble, France
关键词
Inverse kinematics; redundancy; task hierarchy; humanoid robot; PRIORITY REDUNDANCY RESOLUTION; AVOIDING JOINT LIMITS; KINEMATIC CONTROL; TASK; FRAMEWORK; OPTIMIZATION; MANIPULATORS; SINGULARITY; CONSTRAINTS; AVOIDANCE;
D O I
10.1177/0278364914521306
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Hierarchical least-square optimization is often used in robotics to inverse a direct function when multiple incompatible objectives are involved. Typical examples are inverse kinematics or dynamics. The objectives can be given as equalities to be satisfied (e. g. point-to-point task) or as areas of satisfaction (e. g. the joint range). This paper proposes a complete solution to solve multiple least-square quadratic problems of both equality and inequality constraints ordered into a strict hierarchy. Our method is able to solve a hierarchy of only equalities 10 times faster than the iterative-projection hierarchical solvers and can consider inequalities at any level while running at the typical control frequency on whole-body size problems. This generic solver is used to resolve the redundancy of humanoid robots while generating complex movements in constrained environments.
引用
收藏
页码:1006 / 1028
页数:23
相关论文
共 63 条
[1]  
Antonelli G, 1998, IEEE INT CONF ROBOT, P768, DOI 10.1109/ROBOT.1998.677070
[2]   Kinematic control of platoons of autonomous vehicles [J].
Antonelli, Gianluca ;
Chiaverini, Stefano .
IEEE TRANSACTIONS ON ROBOTICS, 2006, 22 (06) :1285-1292
[3]   An inverse kinematics architecture enforcing an arbitrary number of strict priority levels [J].
Baerlocher, P ;
Boulic, R .
VISUAL COMPUTER, 2004, 20 (06) :402-417
[4]  
Behringer F.A., 1977, MATH METHOD OPER RES, V21, DOI [DOI 10.1007/BF01919766, 10.1007/BF01919766]
[5]  
Ben-Israel A, 2003, CMS BOOKS MATH, DOI [10.1007/b97366, DOI 10.1007/B97366]
[6]   Task Space Regions: A framework for pose-constrained manipulation planning [J].
Berenson, Dmitry ;
Srinivasa, Siddhartha ;
Kuffner, James .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2011, 30 (12) :1435-1460
[7]  
Bjorck A, 1996, NUMERICAL METHODS L
[8]  
Bouyarmane K., 2011, 2011 IEEE International Conference on Robotics and Automation (ICRA 2011), P5246, DOI 10.1109/ICRA.2011.5980088
[9]  
Boyd S., 2004, CONVEX OPTIMIZATION, VFirst, DOI DOI 10.1017/CBO9780511804441
[10]  
CHAN TF, 1995, IEEE T ROBOTIC AUTOM, V11, P286, DOI 10.1109/70.370511