The crystal structure and active site location of isocitrate lyase from the fungus Aspergillus nidulans

被引:71
作者
Britton, KL
Langridge, SJ
Baker, PJ
Weeradechapon, K
Sedelnikova, SE
De Lucas, JR
Rice, DW [1 ]
Turner, G
机构
[1] Univ Sheffield, Krebs Inst Biomolec Res, Dept Mol Biol & Biotechnol, Sheffield S10 2TN, S Yorkshire, England
[2] Univ Alcala de Henares, Fac Farm, Dept Microbiol & Parasitol, E-28871 Alcala De Henares, Spain
基金
英国生物技术与生命科学研究理事会; 英国惠康基金;
关键词
enolase superfamily; glyoxylate cycle; isocitrate lyase; PEP mutase; TIM barrel protein;
D O I
10.1016/S0969-2126(00)00117-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Isocitrate lyase catalyses the first committed step of the carbon-conserving glyoxylate bypass, the Mg2+-dependent reversible cleavage of isocitrate into succinate and glyoxylate. This metabolic pathway is an inviting target for the control of a number of diseases, because the enzymes involved in this cycle have been identified in many pathogens including Mycobacterium leprae and Leishmania. Results: As part of a programme of rational drug design the structure of the tetrameric Aspergillus nidulans isocitrate lyase and its complex with glyoxylate and a divalent cation have been solved to 2.8 Angstrom resolution using X-ray diffraction. Each subunit comprises two domains, one of which adopts a folding pattern highly reminiscent of the triose phosphate isomerase (TIM) barrel. A 'knot' between subunits observed in the three-dimensional structure, involving residues towards the C terminus, implies that tetramer assembly involves considerable flexibility in this part of the protein, Conclusions: Difference Fourier analysis together with the pattern of sequence conservation has led to the identification of both the glyoxylate and metal binding sites and implicates the C-terminal end of the TIM barrel as the active site, which is consistent with studies of other enzymes with this fold. Two disordered regions of the polypeptide chain lie close to the active site, one of which includes a critical cysteine residue suggesting that conformational rearrangements are essential for catalysis. Structural similarities between isocitrate lyase and both PEP mutase and enzymes belonging to the enolase superfamily suggest possible relationships in aspects of the mechanism.
引用
收藏
页码:349 / 362
页数:14
相关论文
共 59 条
  • [1] ATTWOOD TK, 1997, EMBNET, V6
  • [2] The enolase superfamily: A general strategy for enzyme-catalyzed abstraction of the alpha-protons of carboxylic acids
    Babbitt, PC
    Hasson, MS
    Wedekind, JE
    Palmer, DRJ
    Barrett, WC
    Reed, GH
    Rayment, I
    Ringe, D
    Kenyon, GL
    Gerlt, JA
    [J]. BIOCHEMISTRY, 1996, 35 (51) : 16489 - 16501
  • [3] A FAST ALGORITHM FOR RENDERING SPACE-FILLING MOLECULE PICTURES
    BACON, D
    ANDERSON, WF
    [J]. JOURNAL OF MOLECULAR GRAPHICS, 1988, 6 (04): : 219 - 220
  • [4] THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY
    BAILEY, S
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 : 760 - 763
  • [5] STRUCTURE OF CHICKEN MUSCLE TRIOSE PHOSPHATE ISOMERASE DETERMINED CRYSTALLOGRAPHICALLY AT 2.5A RESOLUTION USING AMINO-ACID SEQUENCE DATA
    BANNER, DW
    BLOOMER, AC
    PETSKO, GA
    PHILLIPS, DC
    POGSON, CI
    WILSON, IA
    CORRAN, PH
    FURTH, AJ
    MILMAN, JD
    OFFORD, RE
    PRIDDLE, JD
    WALEY, SG
    [J]. NATURE, 1975, 255 (5510) : 609 - 614
  • [6] ALSCRIPT - A TOOL TO FORMAT MULTIPLE SEQUENCE ALIGNMENTS
    BARTON, GJ
    [J]. PROTEIN ENGINEERING, 1993, 6 (01): : 37 - 40
  • [7] PROTEIN DATA BANK - COMPUTER-BASED ARCHIVAL FILE FOR MACROMOLECULAR STRUCTURES
    BERNSTEIN, FC
    KOETZLE, TF
    WILLIAMS, GJB
    MEYER, EF
    BRICE, MD
    RODGERS, JR
    KENNARD, O
    SHIMANOUCHI, T
    TASUMI, M
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1977, 112 (03) : 535 - 542
  • [8] FINDING ALL CLIQUES OF AN UNDIRECTED GRAPH [H]
    BRON, C
    KERBOSCH, J
    [J]. COMMUNICATIONS OF THE ACM, 1973, 16 (09) : 575 - 577
  • [9] A DEVIATION FROM THE CONVENTIONAL TRICARBOXYLIC ACID CYCLE IN PSEUDOMONAS-AERUGINOSA
    CAMPBELL, JJR
    SMITH, RA
    EAGLES, BA
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA, 1953, 11 (04) : 594 - 594
  • [10] PROTEIN-STRUCTURE - THE 14TH BARREL ROLLS OUT
    CHOTHIA, C
    [J]. NATURE, 1988, 333 (6174) : 598 - 599