Approximation by rational functions with prescribed numerator degree in Lp spaces for 1 p∞

被引:8
作者
Mei, XF [1 ]
Zhou, SP
机构
[1] Zhejiang Educ Coll, Dept Math, Hangzhou 310012, Peoples R China
[2] Zhejiang Inst Sci & Technol, Inst Math, Hangzhou 310018, Peoples R China
关键词
rational function; prescribed numerator; Steklov function; modified Jackson kernel;
D O I
10.1023/B:AMHU.0000024682.31751.80
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The present paper establishes a complete result on approximation by rational functions with prescribed numerator degree in LP spaces for 1 < p < infinity and proves that if f (x) is an element of L-[-1,1](p) changes sign exactly l times in (-1,1), then there exists r(x) is an element of R-n(1) such that parallel tof(x) - r(x)parallel to(Lp) less than or equal to C(p,l,b)omega(f,n(-1))(Lp), where R-n(l) indicates all rational functions whose denominators consist of polynomials of degree n and numerators polynomials of degree l, and C-p,C-l,C-b is a positive constant depending only on p, l and b which relates to the distance among the sign change points of f(x) and will be given in 3.
引用
收藏
页码:321 / 336
页数:16
相关论文
共 7 条
[1]  
[Anonymous], 1966, APPROXIMATION FUNCTI
[2]   LP APPROXIMATION BY RECIPROCALS OF TRIGONOMETRIC AND ALGEBRAIC POLYNOMIALS [J].
DEVORE, RA ;
LEVIATAN, D ;
YU, XM .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1990, 33 (04) :460-469
[3]  
Ditzian Z., 1987, Moduli of Smoothness
[4]   DEGREE OF APPROXIMATION BY RATIONAL FUNCTIONS WITH PRESCRIBED NUMERATOR DEGREE [J].
LEVIATAN, D ;
LUBINSKY, DS .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1994, 46 (03) :619-633
[5]   ON APPROXIMATION IN THE LP-NORM BY RECIPROCALS OF POLYNOMIALS [J].
LEVIATAN, D ;
LEVIN, AL ;
SAFF, EB .
JOURNAL OF APPROXIMATION THEORY, 1989, 57 (03) :322-331
[6]  
Stein E. M., 1970, SINGULAR INTEGRALS D
[7]  
Zhao Y, 2001, ACTA MATH HUNG, V92, P205