Approximation by rational functions with prescribed numerator degree in Lp spaces for 1 p∞

被引:8
作者
Mei, XF [1 ]
Zhou, SP
机构
[1] Zhejiang Educ Coll, Dept Math, Hangzhou 310012, Peoples R China
[2] Zhejiang Inst Sci & Technol, Inst Math, Hangzhou 310018, Peoples R China
关键词
rational function; prescribed numerator; Steklov function; modified Jackson kernel;
D O I
10.1023/B:AMHU.0000024682.31751.80
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The present paper establishes a complete result on approximation by rational functions with prescribed numerator degree in LP spaces for 1 < p < infinity and proves that if f (x) is an element of L-[-1,1](p) changes sign exactly l times in (-1,1), then there exists r(x) is an element of R-n(1) such that parallel tof(x) - r(x)parallel to(Lp) less than or equal to C(p,l,b)omega(f,n(-1))(Lp), where R-n(l) indicates all rational functions whose denominators consist of polynomials of degree n and numerators polynomials of degree l, and C-p,C-l,C-b is a positive constant depending only on p, l and b which relates to the distance among the sign change points of f(x) and will be given in 3.
引用
收藏
页码:321 / 336
页数:16
相关论文
共 7 条
  • [1] [Anonymous], 1966, APPROXIMATION FUNCTI
  • [2] LP APPROXIMATION BY RECIPROCALS OF TRIGONOMETRIC AND ALGEBRAIC POLYNOMIALS
    DEVORE, RA
    LEVIATAN, D
    YU, XM
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1990, 33 (04): : 460 - 469
  • [3] Ditzian Z., 1987, Moduli of Smoothness
  • [4] DEGREE OF APPROXIMATION BY RATIONAL FUNCTIONS WITH PRESCRIBED NUMERATOR DEGREE
    LEVIATAN, D
    LUBINSKY, DS
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1994, 46 (03): : 619 - 633
  • [5] ON APPROXIMATION IN THE LP-NORM BY RECIPROCALS OF POLYNOMIALS
    LEVIATAN, D
    LEVIN, AL
    SAFF, EB
    [J]. JOURNAL OF APPROXIMATION THEORY, 1989, 57 (03) : 322 - 331
  • [6] Stein E. M., 1970, SINGULAR INTEGRALS D
  • [7] Zhao Y, 2001, ACTA MATH HUNG, V92, P205