The Molecular Mechanisms Underlying Mitochondria-Associated Endoplasmic Reticulum Membrane-Induced Insulin Resistance

被引:68
作者
Cheng, Han [1 ]
Gang, Xiaokun [1 ]
He, Guangyu [1 ]
Liu, Yujia [1 ]
Wang, Yingxuan [1 ]
Zhao, Xue [1 ]
Wang, Guixia [1 ]
机构
[1] First Hosp Jilin Univ, Dept Endocrinol & Metab, Changchun, Peoples R China
来源
FRONTIERS IN ENDOCRINOLOGY | 2020年 / 11卷
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
mitochondria-associated endoplasmic reticulum membrane; mitochondria; endoplasmic reticulum; insulin resistance; type; 2; diabetes; endoplasmic reticulum stress; REGULATES HEPATIC GLUCONEOGENESIS; CONNECTS ER STRESS; MITOFUSIN; PROTEOMIC ANALYSIS; VAPB INTERACTS; MAM INTEGRITY; CALCIUM; CA2+; DISRUPTION; CERAMIDE;
D O I
10.3389/fendo.2020.592129
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Mitochondria and the endoplasmic reticulum (ER) are connected at multiple sites via what are known as mitochondria-associated ER membranes (MAMs). These associations are known to play an important role in maintaining cellular homeostasis. Impaired MAM signaling has wide-ranging effects in many diseases, such as obesity, diabetes, and neurodegenerative disorders. Accumulating evidence has suggested that MAMs influence insulin signaling through different pathways, including those associated with Ca2+ signaling, lipid metabolism, mitochondrial function, ER stress responses, and inflammation. Altered MAM signaling is a common feature of insulin resistance in different tissues, including the liver, muscle, and even the brain. In the liver, MAMs are key glucose-sensing regulators and have been proposed to be a hub for insulin signaling. Impaired MAM integrity has been reported to disrupt hepatic responses to changes in glucose availability during nutritional transition and to induce hepatic insulin resistance. Meanwhile, these effects can be rescued by the reinforcement of MAM interactions. In contrast, several studies have proposed that enhanced ER-mitochondria connections are detrimental to hepatic insulin signaling and can lead to mitochondrial dysfunction. Thus, given these contradictory results, the role played by the MAM in the regulation of hepatic insulin signaling remains elusive. Similarly, in skeletal muscle, enhanced MAM formation may be beneficial in the early stage of diabetes, whereas continuous MAM enhancement aggravates insulin resistance. Furthermore, recent studies have suggested that ER stress may be the primary pathway through which MAMs induce brain insulin resistance, especially in the hypothalamus. This review will discuss the possible mechanisms underlying MAM-associated insulin resistance as well as the therapeutic potential of targeting the MAM in the treatment of type 2 diabetes.
引用
收藏
页数:15
相关论文
共 136 条
[1]   Fission and fusion machineries converge at ER contact sites to regulate mitochondrial morphology [J].
Abrisch, Robert G. ;
Gumbin, Samantha C. ;
Wisniewski, Brett Taylor ;
Lackner, Laura L. ;
Voeltz, Gia K. .
JOURNAL OF CELL BIOLOGY, 2020, 219 (04)
[2]   Role of Mitofusin-2 in mitochondrial localization and calcium uptake in skeletal muscle [J].
Ainbinder, Alina ;
Boncompagni, Simona ;
Protasi, Feliciano ;
Dirksen, Robert T. .
CELL CALCIUM, 2015, 57 (01) :14-24
[3]   Evidence for brain glucose dysregulation in Alzheimer's disease [J].
An, Yang ;
Varma, Vijay R. ;
Varma, Sudhir ;
Casanova, Ramon ;
Dammer, Eric ;
Pletnikova, Olga ;
Chia, Chee W. ;
Egan, Josephine M. ;
Ferrucci, Luigi ;
Troncoso, Juan ;
Levey, Allan I. ;
Lah, James ;
Seyfried, Nicholas T. ;
Legido-Quigley, Cristina ;
O'Brien, Richard ;
Thambisetty, Madhav .
ALZHEIMERS & DEMENTIA, 2018, 14 (03) :318-329
[4]   A Role for the Ancient SNARE Syntaxin 17 in Regulating Mitochondrial Division [J].
Arasaki, Kohei ;
Shimizu, Hiroaki ;
Mogari, Hirofumi ;
Nishida, Naoki ;
Hirota, Naohiko ;
Furuno, Akiko ;
Kudo, Yoshihisa ;
Baba, Misuzu ;
Baba, Norio ;
Cheng, Jinglei ;
Fujimoto, Toyoshi ;
Ishihara, Naotada ;
Ortiz-Sandoval, Carolina ;
Barlow, Lael D. ;
Raturi, Arun ;
Dohmae, Naoshi ;
Wakana, Yuichi ;
Inoue, Hiroki ;
Tani, Katsuko ;
Dacks, Joel B. ;
Simmen, Thomas ;
Tagaya, Mitsuo .
DEVELOPMENTAL CELL, 2015, 32 (03) :304-317
[5]   Upregulated function of mitochondria-associated ER membranes in Alzheimer disease [J].
Area-Gomez, Estela ;
Castillo, Maria Del Carmen Lara ;
Tambini, Marc D. ;
Guardia-Laguarta, Cristina ;
de Groof, Ad J. C. ;
Madra, Moneek ;
Ikenouchi, Junichi ;
Umeda, Masato ;
Bird, Thomas D. ;
Sturley, Stephen L. ;
Schon, Eric A. .
EMBO JOURNAL, 2012, 31 (21) :4106-4123
[6]   Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity [J].
Arruda, Ana Paula ;
Pers, Benedicte M. ;
Parlakguel, Guenes ;
Gueney, Ekin ;
Inouye, Karen ;
Hotamisligil, Goekhan S. .
NATURE MEDICINE, 2014, 20 (12) :1427-1435
[7]   Insulin resistance and Parkinson's disease: A new target for disease modification? [J].
Athauda, D. ;
Foltynie, T. .
PROGRESS IN NEUROBIOLOGY, 2016, 145 :98-120
[8]   Leptin receptor signaling in is required for normal body POW neurons weight homeostasis [J].
Balthasar, N ;
Coppari, R ;
McMinn, J ;
Liu, SM ;
Lee, CE ;
Tang, V ;
Kenny, CD ;
McGovern, RA ;
Chua, SC ;
Elmquist, JK ;
Lowell, BB .
NEURON, 2004, 42 (06) :983-991
[9]   mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology [J].
Betz, Charles ;
Stracka, Daniele ;
Prescianotto-Baschong, Cristina ;
Frieden, Maud ;
Demaurex, Nicolas ;
Hall, Michael N. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (31) :12526-12534
[10]   Subcellular compartmentalization of ceramide metabolism: MAM (mitochondria-associated membrane) and/or mitochondria? [J].
Bionda, C ;
Portoukalian, J ;
Schmitt, D ;
Rodriguez-Lafrasse, C ;
Ardail, D .
BIOCHEMICAL JOURNAL, 2004, 382 :527-533