Estimates for Solutions to Anisotropic Elliptic Equations with Zero Order Term

被引:3
|
作者
Alberico, Angela [1 ]
Di Blasio, Giuseppina [2 ]
Feo, Filomena [3 ]
机构
[1] CNR, Ist Applicaz Calcolo M Picone, Sez Napoli, I-80131 Naples, Italy
[2] Seconda Univ Napoli, Dipartimento Matemat & Fis, Via Vivaldi 43, I-81100 Caserta, Italy
[3] Univ Napoli Pathenope, Dipartimento Ingn, Ctr Direz Isola C4, I-80143 Naples, Italy
来源
GEOMETRIC PROPERTIES FOR PARABOLIC AND ELLIPTIC PDE'S | 2016年 / 176卷
关键词
Anisotropic symmetrization; A priori estimate; Anisotropic Dirichlet problems; ISOPERIMETRIC-INEQUALITIES; REGULARITY; UNIQUENESS; SYMMETRIZATION; EXISTENCE; THEOREMS;
D O I
10.1007/978-3-319-41538-3_1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Estimates for solutions to homogeneous Dirichlet problems for a class of elliptic equations with zero order term in the form L(u) = g(x, u) + f (x), where the operator L fulfills an anisotropic elliptic condition, are established. Such estimates are obtained in terms of solutions to suitable problems with radially symmetric data, when no sign conditions on g are required.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [21] GRADIENT ESTIMATES FOR ENTROPY SOLUTIONS TO ELLIPTIC EQUATIONS WITH DEGENERATE COERCIVITY
    Zhang, Jiaxiang
    Hongya, Hongya
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2023, 53 (01) : 275 - 284
  • [22] Liouville-type theorems and decay estimates for solutions to higher order elliptic equations
    Lu, Guozhen
    Wang, Peiyong
    Zhu, Jiuyi
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2012, 29 (05): : 653 - 665
  • [23] ON NONLINEAR ELLIPTIC EQUATIONS WITH SINGULAR LOWER ORDER TERM
    Marah, Amine
    Redwane, Hicham
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (02) : 385 - 401
  • [24] Global second-order estimates in anisotropic elliptic problems
    Antonini, Carlo Alberto
    Cianchi, Andrea
    Ciraolo, Giulio
    Farina, Alberto
    Maz'ya, Vladimir
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2025, 130 (03)
  • [25] Lower estimates of densities of solutions of elliptic equations for measures
    Bogachev, V. I.
    Roeckner, M.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2009, 79 (03) : 329 - 334
  • [26] ANISOTROPIC SINGULARITY OF SOLUTIONS TO ELLIPTIC EQUATIONS IN A MEASURE FRAMEWORK
    Wang, Wanwan
    Chen, Huyuan
    Wang, Jian
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [27] Geometric gradient estimates for solutions to degenerate elliptic equations
    Araujo, Damiao J.
    Ricarte, Gleydson
    Teixeira, Eduardo V.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 53 (3-4) : 605 - 625
  • [28] NONTRIVIAL RADIAL SOLUTIONS FOR A SYSTEM OF SECOND ORDER ELLIPTIC EQUATIONS
    Zhang, Haiyan
    Xu, Jiafa
    O'Regan, Donal
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2022, 12 (06): : 2208 - 2219
  • [29] A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS
    Cabre, Xavier
    Sanchon, Manel
    Spruck, Joel
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (02) : 601 - 609
  • [30] Morrey estimates for a class of elliptic equations with drift term
    Cirmi, G. R.
    D'Asero, S.
    Leonardi, S.
    ADVANCES IN NONLINEAR ANALYSIS, 2020, 9 (01) : 1333 - 1350