Estimates for Solutions to Anisotropic Elliptic Equations with Zero Order Term

被引:3
|
作者
Alberico, Angela [1 ]
Di Blasio, Giuseppina [2 ]
Feo, Filomena [3 ]
机构
[1] CNR, Ist Applicaz Calcolo M Picone, Sez Napoli, I-80131 Naples, Italy
[2] Seconda Univ Napoli, Dipartimento Matemat & Fis, Via Vivaldi 43, I-81100 Caserta, Italy
[3] Univ Napoli Pathenope, Dipartimento Ingn, Ctr Direz Isola C4, I-80143 Naples, Italy
来源
GEOMETRIC PROPERTIES FOR PARABOLIC AND ELLIPTIC PDE'S | 2016年 / 176卷
关键词
Anisotropic symmetrization; A priori estimate; Anisotropic Dirichlet problems; ISOPERIMETRIC-INEQUALITIES; REGULARITY; UNIQUENESS; SYMMETRIZATION; EXISTENCE; THEOREMS;
D O I
10.1007/978-3-319-41538-3_1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Estimates for solutions to homogeneous Dirichlet problems for a class of elliptic equations with zero order term in the form L(u) = g(x, u) + f (x), where the operator L fulfills an anisotropic elliptic condition, are established. Such estimates are obtained in terms of solutions to suitable problems with radially symmetric data, when no sign conditions on g are required.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [1] Estimates for fully anisotropic elliptic equations with a zero order term
    Alberico, A.
    di Blasio, G.
    Feo, F.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 181 : 249 - 264
  • [2] A priori estimates for elliptic equations with gradient dependent term and zero order term
    Alvino, A.
    Betta, M. F.
    Mercaldo, A.
    Volpicelli, R.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 302 : 550 - 584
  • [3] A priori estimates for solutions of anisotropic elliptic equations
    Vetois, Jerome
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (09) : 3881 - 3905
  • [4] NEW A PRIORI ESTIMATES OF SOLUTIONS TO ANISOTROPIC ELLIPTIC EQUATIONS
    Tersenov, Ar. S.
    SIBERIAN MATHEMATICAL JOURNAL, 2012, 53 (03) : 539 - 550
  • [5] A priori estimates for solutions to anisotropic elliptic problems via symmetrization
    Alberico, A.
    di Blasio, G.
    Feo, F.
    MATHEMATISCHE NACHRICHTEN, 2017, 290 (07) : 986 - 1003
  • [6] Fundamental Solutions for Anisotropic Elliptic Equations: Existence and A Priori Estimates
    Cirstea, Florica C.
    Vetois, Jerome
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2015, 40 (04) : 727 - 765
  • [7] Morrey estimates for some classes of elliptic equations with a lower order term
    Leonardi, S.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 177 : 611 - 627
  • [8] Second order regularity for solutions to anisotropic degenerate elliptic equations
    Baratta, Daniel
    Muglia, Luigi
    Vuono, Domenico
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 435
  • [9] Estimates for solutions of Dirac equations and an application to a geometric elliptic-parabolic problem
    Chen, Qun
    Jost, Jurgen
    Sun, Linlin
    Zhu, Miaomiao
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2019, 21 (03) : 665 - 707
  • [10] BOUNDEDNESS OF SOLUTIONS TO SINGULAR ANISOTROPIC ELLIPTIC EQUATIONS
    Brandolini, Barbara
    Cirstea, Florica C.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024, 17 (04): : 1545 - 1561