Rhabdomyosarcoma Histology Classification using Ensemble of Deep Learning Networks

被引:1
作者
Agarwal, Saloni [1 ]
Abaker, Mohamedelfatih Eltigani Osman [1 ]
Zhang, Xinyi [2 ]
Daescu, Ovidiu [1 ]
Barkauskas, Donald A. [3 ]
Rudzinski, Erin R. [4 ]
Leavey, Patrick [2 ]
机构
[1] Univ Texas Dallas, Richardson, TX USA
[2] Univ Texas Southwestern Med Ctr Dallas, Dallas, TX USA
[3] Univ Southern Calif, Keck Sch Med, Los Angeles, CA USA
[4] Seattle Childrens Hosp, Seattle, WA USA
来源
ACM-BCB 2020 - 11TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS | 2020年
关键词
Histology; Deep Learning; Rhabdomyosarcoma; ensemble;
D O I
10.1145/3388440.3412486
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A significant number of machine learning methods have been developed to identify major tumor types in histology images, yet much less is known about automatic classification of tumor subtypes. Rhabdomyosarcoma (RMS), the most common type of soft tissue cancer in children, has several subtypes, the most common being Embryonal, Alveolar, and Spindle Cell. Classifying RMS to the right subtype is critical, since subtypes are known to respond to different treatment protocols. Manual classification requires high expertise and is time consuming due to subtle variance in appearance of histopathology images. In this paper, we introduce and compare machine learning based architectures for automatic classification of Rhabdomyosarcoma into the three major subtypes, from whole slide images (WSI). For training purpose, we only know the class assigned to a WSI, having no manual annotations on the image, while most related work on tumor classification requires manual region or nuclei annotations on WSIs. To predict the class of a new WSI we first divide it into tiles, predict the class of each tile, then use thresholding with soft voting to convert tile level predictions to WSI level prediction. We obtain 94.87% WSI tumor subtype classification accuracy on a large and diverse test dataset. We achieve such accurate classification at 5X magnification level of WSIs, departing from related work, that uses 20X or 10X for best results. A direct advantage of our method is that both training and testing can be performed much faster computationally due to the lower image resolution.
引用
收藏
页数:10
相关论文
共 42 条
[1]  
Agarwal S, 2018, INT CONF COMPUT ADV
[2]   BACH: Grand challenge on breast cancer histology images [J].
Aresta, Guilherme ;
Araujo, Teresa ;
Kwok, Scotty ;
Chennamsetty, Sai Saketh ;
Safwan, Mohammed ;
Alex, Varghese ;
Marami, Bahram ;
Prastawa, Marcel ;
Chan, Monica ;
Donovan, Michael ;
Fernandez, Gerardo ;
Zeineh, Jack ;
Kohl, Matthias ;
Walz, Christoph ;
Ludwig, Florian ;
Braunewell, Stefan ;
Baust, Maximilian ;
Quoc Dang Vu ;
Minh Nguyen Nhat To ;
Kim, Eal ;
Kwak, Jin Tae ;
Galal, Sameh ;
Sanchez-Freire, Veronica ;
Brancati, Nadia ;
Frucci, Maria ;
Riccio, Daniel ;
Wang, Yaqi ;
Sun, Lingling ;
Ma, Kaiqiang ;
Fang, Jiannan ;
Kone, Ismael ;
Boulmane, Lahsen ;
Campilho, Aurelio ;
Eloy, Catarina ;
Polonia, Antonio ;
Aguiar, Paulo .
MEDICAL IMAGE ANALYSIS, 2019, 56 :122-139
[3]   Viable and necrotic tumor assessment from whole slide images of osteosarcoma using machine-learning and deep-learning models [J].
Arunachalam, Harish ;
Mishra, Rashika ;
Daescu, Ovidiu ;
Cederberg, Kevin ;
Rakheja, Dinesh ;
Sengupta, Anita ;
Leonard, David ;
Hallac, Rami ;
Leavey, Patrick .
PLOS ONE, 2019, 14 (04)
[4]   From Detection of Individual Metastases to Classification of Lymph Node Status at the Patient Level: The CAMELYON17 Challenge [J].
Bandi, Peter ;
Geessink, Oscar ;
Manson, Quirine ;
van Dijk, Marcory ;
Balkenhol, Maschenka ;
Hermsen, Meyke ;
Bejnordi, Babak Ehteshami ;
Lee, Byungjae ;
Paeng, Kyunghyun ;
Zhong, Aoxiao ;
Li, Quanzheng ;
Zanjani, Farhad Ghazvinian ;
Zinger, Svitlana ;
Fukuta, Keisuke ;
Komura, Daisuke ;
Ovtcharov, Vlado ;
Cheng, Shenghua ;
Zeng, Shaoqun ;
Thagaard, Jeppe ;
Dahl, Anders B. ;
Lin, Huangjing ;
Chen, Hao ;
Jacobsson, Ludwig ;
Hedlund, Martin ;
Cetin, Melih ;
Halici, Eren ;
Jackson, Hunter ;
Chen, Richard ;
Both, Fabian ;
Franke, Joerg ;
Kusters-Vandevelde, Heidi ;
Vreuls, Willem ;
Bult, Peter ;
van Ginneken, Bram ;
van der Laak, Jeroen ;
Litjens, Geert .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (02) :550-560
[5]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[6]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[7]   Deep learning based tissue analysis predicts outcome in colorectal cancer [J].
Bychkov, Dmitrii ;
Linder, Nina ;
Turkki, Riku ;
Nordling, Stig ;
Kovanen, Panu E. ;
Verrill, Clare ;
Walliander, Margarita ;
Lundin, Mikael ;
Haglund, Caj ;
Lundin, Johan .
SCIENTIFIC REPORTS, 2018, 8
[8]   Classification of Breast Cancer Histology Image using Ensemble of Pre-trained Neural Networks [J].
Chennamsetty, Sai Saketh ;
Safwan, Mohammed ;
Alex, Varghese .
IMAGE ANALYSIS AND RECOGNITION (ICIAR 2018), 2018, 10882 :804-811
[9]  
Dagher R, 1999, Oncologist, V4, P34
[10]  
Ertosun Mehmet Gunhan, 2015, AMIA Annu Symp Proc, V2015, P1899