Exact solitary wave solutions of the complex Klein-Gordon equation

被引:25
作者
Abazari, Reza [1 ]
Jamshidzadeh, Shabnam [1 ]
机构
[1] Islamic Azad Univ, Ardabil Branch, Young Researchers & Elite Club, Ardebil, Iran
来源
OPTIK | 2015年 / 126卷 / 19期
关键词
Soliton; Complex Klein-Gordon equation; (G '/G)-expansion method; Hyperbolic function solutions; Trigonometric function solutions; NONLINEAR EVOLUTION-EQUATIONS; TRANSFORMATION;
D O I
10.1016/j.ijleo.2015.05.056
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this letter, we establish some exact solutions for complex nonlinear Klein-Gordon equation u(tt) - p(2)u(xx) + qu + r vertical bar u vertical bar(2)u = 0, where pqr not equal 0. The (G'/G)-expansion method is used to construct exact periodic and soliton solutions of this equation. Our work is motivated by the fact that the (G'/G)-expansion method provides not only more general forms of solutions but also periodic and solitary waves. As a result, hyperbolic function solutions, trigonometric function solutions and rational function solutions with parameters are obtained and shown in some figures. These solutions may be important for the explanation of some practical physical and engineering problems. (C) 2015 Elsevier GmbH. All rights reserved.
引用
收藏
页码:1970 / 1975
页数:6
相关论文
共 17 条
[1]   Solitary-wave solutions of the Klein-Gordon equation with quintic nonlinearity [J].
Abazari, R. .
JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS, 2013, 54 (03) :397-403
[2]  
Abazari R, 2014, ROM J PHYS, V59, P3
[3]   Application of (G′/G)-expansion method to travelling wave solutions of three nonlinear evolution equation [J].
Abazari, Reza .
COMPUTERS & FLUIDS, 2010, 39 (10) :1957-1963
[4]   The (G′/G) expansion method for Tzitzeica type nonlinear evolution equations [J].
Abazari, Reza .
MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (9-10) :1834-1845
[5]  
Ablowitz M. J., 1981, Solitons and the Inverse Scattering Transform
[6]  
[Anonymous], 1844, 14 M BRIT ASS ADV SC
[7]   SINE-GORDON EQUATION AS A MODEL CLASSICAL FIELD-THEORY [J].
CAUDREY, PJ ;
EILBECK, JC ;
GIBBON, JD .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1975, B 25 (02) :497-512
[8]  
Dodd R. K., 1982, Solitons and Nonlinear Wave Equations
[9]   SOLITON-SOLUTIONS OF THE KORTEWEG-DEVRIES AND THE KADOMTSEV-PETVIASHVILI EQUATIONS - THE WRONSKIAN TECHNIQUE [J].
FREEMAN, NC ;
NIMMO, JJC .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 389 (1797) :319-329
[10]   New applications of developed Jacobi elliptic function expansion methods [J].
Liu, GT ;
Fan, TY .
PHYSICS LETTERS A, 2005, 345 (1-3) :161-166