Conditional entropy of ordinal patterns

被引:54
|
作者
Unakafov, Anton M. [1 ,2 ]
Keller, Karsten [1 ]
机构
[1] Med Univ Lubeck, Inst Math, D-23562 Lubeck, Germany
[2] Med Univ Lubeck, Grad Sch Comp Med & Life Sci, D-23562 Lubeck, Germany
关键词
Conditional entropy; Ordinal pattern; Kolmogorov-Sinai entropy; Permutation entropy; Markov shift; Complexity; KOLMOGOROV-SINAI ENTROPY; PERMUTATION ENTROPY; TIME-SERIES; COMPLEXITY; VIEWPOINT;
D O I
10.1016/j.physd.2013.11.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate a quantity called conditional entropy of ordinal patterns, akin to the permutation entropy. The conditional entropy of ordinal patterns describes the average diversity of the ordinal patterns succeeding a given ordinal pattern. We observe that this quantity provides a good estimation of the Kolmogorov Sinai entropy in many cases. In particular, the conditional entropy of ordinal patterns of a finite order coincides with the Kolmogorov Sinai entropy for periodic dynamics and for Markov shifts over a binary alphabet. Finally, the conditional entropy of ordinal patterns is computationally simple and thus can be well applied to real-world data. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:94 / 102
页数:9
相关论文
共 50 条
  • [31] Conditional entropy approach to analyze cognitive dynamics in autism spectrum disorder
    Wadhera, Tanu
    Kakkar, Deepti
    NEUROLOGICAL RESEARCH, 2020, 42 (10) : 869 - 878
  • [32] Control loop performance assessment using ordinal time series analysis
    Martinez, Ernesto
    de Prada, Cesar
    17TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2007, 24 : 261 - 266
  • [33] 20 years of ordinal patterns: Perspectives and challenges
    Leyva, Inmaculada
    Martinez, Johann H.
    Masoller, Cristina
    Rosso, Osvaldo A.
    Zanin, Massimiliano
    EPL, 2022, 138 (03)
  • [34] CONTAINMENT FOR CONDITIONAL TREE PATTERNS
    Facchini, Alessandro
    Hirai, Yoichi
    Marx, Maarten
    Sherkhonov, Evgeny
    LOGICAL METHODS IN COMPUTER SCIENCE, 2015, 11 (02)
  • [35] A Note on Conditional Entropy
    Wang Yong
    Huang Jinxiang
    Wang Huadeng
    2009 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, VOL 3, 2009, : 480 - 482
  • [36] Conditional Entropy of DNA
    Vohnoutova, Marta
    Dostalek, Libor
    Dostalkova, Iva
    Gahurova, Lenka
    2020 10TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER INFORMATION TECHNOLOGIES (ACIT), 2020, : 94 - 97
  • [37] Ordinal patterns in epileptic brains: Analysis of intracranial EEG and simultaneous EEG-fMRI
    Rummel, C.
    Abela, E.
    Hauf, M.
    Wiest, R.
    Schindler, K.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2013, 222 (02) : 569 - 585
  • [38] Refined Composite Multiscale Permutation Entropy to Overcome Multiscale Permutation Entropy Length Dependence
    Humeau-Heurtier, Anne
    Wu, Chiu-Wen
    Wu, Shuen-De
    IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (12) : 2364 - 2367
  • [39] ENTROPY FORMULAE OF CONDITIONAL ENTROPY IN MEAN METRICS
    Huang, Ping
    Chen, Ercai
    Wang, Chenwei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (10) : 5129 - 5144
  • [40] Classification of 5-S Epileptic EEG Recordings Using Distribution Entropy and Sample Entropy
    Li, Peng
    Karmakar, Chandan
    Yan, Chang
    Palaniswami, Marimuthu
    Liu, Changchun
    FRONTIERS IN PHYSIOLOGY, 2016, 7