Conditional entropy of ordinal patterns

被引:54
|
作者
Unakafov, Anton M. [1 ,2 ]
Keller, Karsten [1 ]
机构
[1] Med Univ Lubeck, Inst Math, D-23562 Lubeck, Germany
[2] Med Univ Lubeck, Grad Sch Comp Med & Life Sci, D-23562 Lubeck, Germany
关键词
Conditional entropy; Ordinal pattern; Kolmogorov-Sinai entropy; Permutation entropy; Markov shift; Complexity; KOLMOGOROV-SINAI ENTROPY; PERMUTATION ENTROPY; TIME-SERIES; COMPLEXITY; VIEWPOINT;
D O I
10.1016/j.physd.2013.11.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate a quantity called conditional entropy of ordinal patterns, akin to the permutation entropy. The conditional entropy of ordinal patterns describes the average diversity of the ordinal patterns succeeding a given ordinal pattern. We observe that this quantity provides a good estimation of the Kolmogorov Sinai entropy in many cases. In particular, the conditional entropy of ordinal patterns of a finite order coincides with the Kolmogorov Sinai entropy for periodic dynamics and for Markov shifts over a binary alphabet. Finally, the conditional entropy of ordinal patterns is computationally simple and thus can be well applied to real-world data. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:94 / 102
页数:9
相关论文
共 50 条
  • [21] Considerations on the Information and Entropy of Ordinal Data
    Petrila, Iulian
    Ungureanu, Florina
    Manta, Vasile
    2014 18TH INTERNATIONAL CONFERENCE SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2014, : 732 - 736
  • [22] Conditional Entropy: A Potential Digital Marker for Stress
    Keshmiri, Soheil
    ENTROPY, 2021, 23 (03) : 1 - 14
  • [23] Using the Information Provided by Forbidden Ordinal Patterns in Permutation Entropy to Reinforce Time Series Discrimination Capabilities
    Cuesta-Frau, David
    ENTROPY, 2020, 22 (05)
  • [24] Permutation Entropy: New Ideas and Challenges
    Keller, Karsten
    Mangold, Teresa
    Stolz, Inga
    Werner, Jenna
    ENTROPY, 2017, 19 (03)
  • [25] White Noise Test from Ordinal Patterns in the Entropy-Complexity Plane
    Chagas, Eduarda T. C.
    Queiroz-Oliveira, Marcelo
    Rosso, Osvaldo A.
    Ramos, Heitor S.
    Freitas, Cristopher G. S.
    Frery, Alejandro C.
    INTERNATIONAL STATISTICAL REVIEW, 2022, 90 (02) : 374 - 396
  • [26] Complexity measure by ordinal matrix growth modeling
    Fouda, J. S. Armand Eyebe
    Koepf, Wolfram
    NONLINEAR DYNAMICS, 2017, 89 (02) : 1385 - 1395
  • [27] Ordinal methods for a characterization of evolving functional brain networks
    Lehnertz, Klaus
    CHAOS, 2023, 33 (02)
  • [28] Continuous ordinal patterns: Creating a bridge between ordinal analysis and deep learning
    Zanin, Massimiliano
    CHAOS, 2023, 33 (03)
  • [29] Time-Delay Identification Using Multiscale Ordinal Quantifiers
    Soriano, Miguel C.
    Zunino, Luciano
    ENTROPY, 2021, 23 (08)
  • [30] Unveiling Dynamical Symmetries in 2D Chaotic Iterative Maps with Ordinal-Patterns-Based Complexity Quantifiers
    Novak, Benjamin S.
    Aragoneses, Andres
    DYNAMICS, 2023, 3 (04): : 750 - 763