Predicting river water height using deep learning-based features

被引:1
作者
Borwarnginn, Punyanuch [1 ]
Haga, Jason H. [2 ]
Kusakunniran, Worapan [1 ]
机构
[1] Mahidol Univ, Fac Informat & Commun Technol, 999 Phuttamonthon 4 Rd, Salaya 73170, Nakhon Pathom, Thailand
[2] Natl Inst Adv Ind Sci & Technol, Digital Architecture Res Ctr, Tsukuba, Ibaraki, Japan
来源
ICT EXPRESS | 2022年 / 8卷 / 04期
关键词
Water level prediction; Deep learning; Support Vector Regression; LSTM; Feature extraction;
D O I
10.1016/j.icte.2022.03.012
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper presents the river height prediction model using real-world historical sensor data such as rainfall, cumulative rainfall, and river water heights. The study evaluates using a Support Vector Regression, a Long Short-Term Memory, and a combination of a Long Short-Term Memory as the feature extraction and a support vector regression. Through experiments, various future predictions are tested, including a few hours or a day. As expected, RNN achieved the lowest error, but it could not capture rapid changes in river height levels. In comparison, the LSTM-SVR can better represent rapid transient changes in the data by using nonlinear kernels. (C) 2022 The Author(s). Published by Elsevier B.V. on behalf of The Korean Institute of Communications and Information Sciences.
引用
收藏
页码:588 / 594
页数:7
相关论文
共 23 条
[1]   Accurate photovoltaic power forecasting models using deep LSTM-RNN [J].
Abdel-Nasser, Mohamed ;
Mahmoud, Karar .
NEURAL COMPUTING & APPLICATIONS, 2019, 31 (07) :2727-2740
[2]  
Alexander D., 2018, Natural Disasters, DOI DOI 10.4324/9781315859149
[3]  
Basak D., 2007, Neural Inf Process-Lett Rev, V11, P203, DOI DOI 10.1007/978-1-4302-5990-9_4
[4]  
Borwarnginn P., 2019, ECTI T COMPUT INFORM, V13, P167, DOI [10.37936/ecticit.2019132.216323, DOI 10.37936/ECTICIT.2019132.216323]
[5]   Estimation of the Change in Lake Water Level by Artificial Intelligence Methods [J].
Buyukyildiz, Meral ;
Tezel, Gulay ;
Yilmaz, Volkan .
WATER RESOURCES MANAGEMENT, 2014, 28 (13) :4747-4763
[6]   A tutorial on v-support vector machines [J].
Chen, PH ;
Lin, CJ ;
Schölkopf, B .
APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2005, 21 (02) :111-136
[7]  
Cho K., 2014, INT C MACH LEARN ICM, P1724, DOI [DOI 10.3115/V1/D14-1179, 10.3115/v1/D14-1179]
[8]   Real-Time Probabilistic Flood Forecasting Using Multiple Machine Learning Methods [J].
Dinh Ty Nguyen ;
Chen, Shien-Tsung .
WATER, 2020, 12 (03)
[9]  
Fernandes de Mello R., 2018, Machine Learning: A Practical Approach on the Statistical Learning Theory, DOI [DOI 10.1007/978-3-319-94989-5, 10.1007/978-3-319-94989-5_4, DOI 10.1007/978-3-319-94989-5_4]
[10]  
Graves A, 2012, STUD COMPUT INTELL, V385, P1, DOI [10.1007/978-3-642-24797-2, 10.1162/neco.1997.9.1.1]