Optimization of Nanoparticle-Based SERS Substrates through Large Scale Realistic Simulations

被引:168
作者
Solis, Diego M. [1 ]
Taboada, Jose M. [2 ]
Obelleiro, Fernando [1 ]
Liz-Marzan, Luis M. [3 ,5 ,6 ]
Javier Garcia de Abajo, F. [4 ,7 ]
机构
[1] Univ Vigo, Dept Teoria Senal & Comunicac, Vigo 36301, Spain
[2] Univ Extremadura, Dept Tecnol Comp & Comunicac, Caceres 10003, Spain
[3] CIC BiomaGUNE, Bionanoplasmon Lab, Paseo Miramon 182, Donostia San Sebastian 20014, Spain
[4] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Castelldefels 08860, Barcelona, Spain
[5] Basque Fdn Sci, Ikerbasque, Bilbao 48013, Spain
[6] CIBER BBN, Donostia San Sebastian 20014, Spain
[7] ICREA, Passeig Lluis Co 23, Barcelona 08010, Spain
关键词
surface-enhanced Raman scattering (SERS); optical sensing; gold nanoparticles; plasmons; particle arrays; ENHANCED RAMAN-SPECTROSCOPY; SURFACE-PLASMON RESONANCE; ELECTROMAGNETIC SCATTERING; HOT-ELECTRON; NANOPLASMONICS; ALGORITHM; MOLECULES; BACTERIA;
D O I
10.1021/acsphotonics.6b00786
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Surface-enhanced Raman scattering (SERS) has become a widely used spectroscopic technique for chemical identification, providing unbeaten sensitivity down to the single molecule level. The amplification of the optical near field produced by collective electron excitations plasmons in nanostructured metal surfaces gives rise to a dramatic increase by many orders of magnitude in the Raman scattering intensities from neighboring molecules. This effect strongly depends on the detailed geometry and composition of the plasmonsupporting metallic structures. However, the search for optimized SERS substrates has largely relied on empirical data, due in part to the complexity of the structures, whose simulation becomes prohibitively demanding. In this work, we use state-of-the-art electromagnetic computation techniques to produce predictive simulations for a wide range of nanoparticle-based SERS substrates, including realistic configurations consisting of random arrangements of hundreds of nanoparticles with various morphologies. This allows us to derive rules of thumb for the influence of particle anisotropy and substrate coverage on the obtained SERS enhancement and optimum spectral ranges of operation. Our results provide a solid background to understand and design optimized SERS substrates.
引用
收藏
页码:329 / 337
页数:9
相关论文
共 42 条
[1]   Biosensing with plasmonic nanosensors [J].
Anker, Jeffrey N. ;
Hall, W. Paige ;
Lyandres, Olga ;
Shah, Nilam C. ;
Zhao, Jing ;
Van Duyne, Richard P. .
NATURE MATERIALS, 2008, 7 (06) :442-453
[2]  
[Anonymous], 1989, Advanced Engineering Electromagnetics
[3]   Nanoplasmonics for chemistry [J].
Baffou, Guillaume ;
Quidant, Romain .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (11) :3898-3907
[4]  
Bodelón G, 2016, NAT MATER, V15, P1203, DOI [10.1038/NMAT4720, 10.1038/nmat4720]
[5]  
Clavero C, 2014, NAT PHOTONICS, V8, P95, DOI [10.1038/NPHOTON.2013.238, 10.1038/nphoton.2013.238]
[6]  
Edwards D.F., 1985, Handbook of optical constants of solids
[7]   Hierarchical Self-Assembly of Gold Nanoparticles into Patterned Plasmonic Nanostructures [J].
Hamon, Cyrille ;
Novikov, Sergey ;
Scarabelli, Leonardo ;
Basabe-Desmonts, Lourdes ;
Liz-Marzan, Luis M. .
ACS NANO, 2014, 8 (10) :10694-10703
[8]  
Harrington R. F., 1982, Field Computation by Moment Methods, DOI 10.1109/9780470544631
[9]   Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine [J].
Jain, Prashant K. ;
Huang, Xiaohua ;
El-Sayed, Ivan H. ;
El-Sayed, Mostafa A. .
ACCOUNTS OF CHEMICAL RESEARCH, 2008, 41 (12) :1578-1586
[10]   OPTICAL CONSTANTS OF NOBLE METALS [J].
JOHNSON, PB ;
CHRISTY, RW .
PHYSICAL REVIEW B, 1972, 6 (12) :4370-4379