Field theory renormalization group: the Tomonaga-Luttinger model revisited

被引:5
作者
Ferraz, A. [1 ]
机构
[1] Univ Brasilia, Int Ctr Condensed Matter Phys, BR-70904910 Brasilia, DF, Brazil
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2006年 / 39卷 / 25期
关键词
D O I
10.1088/0305-4470/39/25/S11
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We apply field theoretical renormalization group (RG) methods to describe the Tomonaga-Luttinger model as an important test ground to deal with spin-charge separation effects in higher spatial dimensions. We calculate the RG equations for the renormalized forward couplings g(2R) and g(4R) up to two-loop order and demonstrate that they do not flow in the vicinities of the Fermi points (FPs). We solve the Callan-Symanzik equation for G((a)R) in the vicinities of the FPs. We calculate the related spectral function and the momentum distribution function at p = k(F), p(0) = omega. We compute the renormalized one-particle irreducible function Gamma((2))((+)R) (p, p(0) = 0; Lambda) and show that it carries important spin-charge separation effects in agreement with well-known results. Finally, we discuss the implementation of the RG scheme taking into account the important simplifications produced by the Ward identities.
引用
收藏
页码:7963 / 7975
页数:13
相关论文
共 22 条
[1]   Temperature dependence of antiferromagnetic order in the Hubbard model [J].
Baier, T ;
Bick, E ;
Wetterich, C .
PHYSICAL REVIEW B, 2004, 70 (12) :125111-1
[2]   Ward identities and chiral anomaly in the Luttinger liquid [J].
Benfatto, G ;
Mastropietro, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 258 (03) :609-655
[3]  
BOURBONNAIS C, THEORETICAL METHODS
[4]   Dynamic scaling in the vicinity of the Luttinger liquid fixed point [J].
Busche, T ;
Bartosch, L ;
Kopietz, P .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (36) :8513-8535
[5]  
CAPRARA S, 2002, PHYS CORRELATED ELEC
[6]   Some consequences of the Luttinger theorem: The Luttinger surfaces in non-Fermi liquids and Mott insulators [J].
Dzyaloshinskii, I .
PHYSICAL REVIEW B, 2003, 68 (08)
[7]  
Dzyaloshinskii I.E., 1974, SOV PHYS JETP, V38, P202
[8]   Non-Fermi liquid in a truncated two-dimensional Fermi surface [J].
Ferraz, A .
PHYSICAL REVIEW B, 2003, 68 (07)
[9]   Fermi surface renormalization in two spatial dimensions [J].
Ferraz, A .
EUROPHYSICS LETTERS, 2003, 61 (02) :228-234
[10]   Field-theoretical renormalization group for a flat two-dimensional Fermi surface -: art. no. 165113 [J].
Freire, H ;
Corrêa, E ;
Ferraz, A .
PHYSICAL REVIEW B, 2005, 71 (16)