Bifurcation Analysis of Synchronized Regions in Complex Dynamical Networks with Coupling Delay

被引:26
作者
Tang, Longkun [1 ,2 ]
Lu, Jun-An [2 ]
Lu, Jinhu [3 ]
Wu, Xiaoqun [2 ]
机构
[1] Huaqiao Univ, Sch Math Sci, Quanzhou 362021, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, Inst Syst Sci, LSC, Beijing 100190, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2014年 / 24卷 / 01期
基金
中国国家自然科学基金;
关键词
Bifurcation; synchronized region; complex network; coupling delay; ADAPTIVE SYNCHRONIZATION; MULTIAGENT SYSTEMS; CONSENSUS;
D O I
10.1142/S0218127414500114
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
According to the master stability function (MSF) framework, synchronized regions play an extremely important role in network synchronization. On these grounds, this paper casts sight on network synchronous state stability via studying the bifurcation (or transition) problem of network synchronized regions with varying nodal dynamics, and the effects of time delay on the bifurcation of synchronized regions. Theoretical and numerical investigations show that in complex networks with coupling delay, there exist rich bifurcation behaviors of synchronized regions. The coupling delay can not only enlarge or narrow synchronized regions, but also change bifurcation points. More importantly, a very small delay can result in the conversion of an unbounded or empty synchronized region into a bounded one, implying that coupling delay can enhance or suppress synchronization in complex dynamical networks. These results will further strengthen our understanding for synchronous state stability in complex dynamical networks.
引用
收藏
页数:13
相关论文
共 43 条
  • [1] Synchronization in complex networks
    Arenas, Alex
    Diaz-Guilera, Albert
    Kurths, Jurgen
    Moreno, Yamir
    Zhou, Changsong
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03): : 93 - 153
  • [2] Emergence of scaling in random networks
    Barabási, AL
    Albert, R
    [J]. SCIENCE, 1999, 286 (5439) : 509 - 512
  • [3] Synchronization in small-world systems
    Barahona, M
    Pecora, LM
    [J]. PHYSICAL REVIEW LETTERS, 2002, 89 (05) : 054101/1 - 054101/4
  • [4] Complex networks: Structure and dynamics
    Boccaletti, S.
    Latora, V.
    Moreno, Y.
    Chavez, M.
    Hwang, D. -U.
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5): : 175 - 308
  • [5] Chen J., 2013, ACTA AUTOMAT SIN, V39, P2111
  • [6] Facilitated synchronization of complex networks through a discontinuous coupling strategy
    Chen, L.
    Qiu, C.
    Huang, H. B.
    Qi, G. X.
    Wang, H. J.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2010, 76 (04) : 625 - 635
  • [7] Synchronization with on-off coupling: Role of time scales in network dynamics
    Chen, L.
    Qiu, C.
    Huang, H. B.
    [J]. PHYSICAL REVIEW E, 2009, 79 (04):
  • [8] Synchronization: An Obstacle to Identification of Network Topology
    Chen, Liang
    Lu, Jun-an
    Tse, Chi K.
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2009, 56 (04) : 310 - 314
  • [9] CONSENSUS OF DISCRETE-TIME SECOND-ORDER MULTIAGENT SYSTEMS BASED ON INFINITE PRODUCTS OF GENERAL STOCHASTIC MATRICES
    Chen, Yao
    Lu, Jinhu
    Yu, Xinghuo
    Lin, Zongli
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (04) : 3274 - 3301
  • [10] Consensus of discrete-time multi-agent systems with transmission nonlinearity
    Chen, Yao
    Lu, Jinhu
    Lin, Zongli
    [J]. AUTOMATICA, 2013, 49 (06) : 1768 - 1775