Second Darboux problem for the wave equation with a power-law nonlinearity

被引:5
作者
Kharibegashvili, S. S. [1 ]
Dzhokhadze, O. M.
机构
[1] Georgia Tech Univ, Tbilisi, Georgia
关键词
CAUCHY-GOURSAT PROBLEM;
D O I
10.1134/S0012266113120124
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For the one-dimensional wave equation with a power-law nonlinearity, we consider the second Darboux problem and study the existence and uniqueness of a global solution, the existence of local solutions, and the absence of global solutions.
引用
收藏
页码:1577 / 1595
页数:19
相关论文
共 21 条
[1]  
[Anonymous], 1995, URAVNENIYA MATEMATIC
[2]  
[Anonymous], 1989, Geometric Theory of Semilinear Parabolic Partial Differential Equations, DOI DOI 10.1007/BFB0089647
[3]  
[Anonymous], 1973, ANAL REAL COMPLEX MA
[4]   FINITE DIFFERENCE SOLUTION OF A NONLINEAR KLEIN-GORDON EQUATION WITH AN EXTERNAL SOURCE [J].
Berikelashvili, G. ;
Jokhadze, O. ;
Kharibegashvili, S. ;
Midodashvili, B. .
MATHEMATICS OF COMPUTATION, 2011, 80 (274) :847-862
[5]  
Berikelashvili G.K., 2008, DIFF URAVN, V44, P359
[6]  
Bitsadze A.V., 1981, Nekotorye klassy uravnenii v chastnykh proizvodnykh
[7]  
Bitsadze A.V., 1982, Equations of Mathematical Physics
[8]  
Dzhokhadze O. M., 2008, Mat. Zametki, V84, P693
[9]  
Gilbarg D., 1977, Grundlehren der Mathematischen Wissenschaften, V224
[10]  
Goursat E., 1933, COURS ANAL MATH 1, VIII