Photocatalytic activity and NIR laser response of polyaniline conjugated graphene nanocomposite prepared by a novel acid-less method

被引:59
作者
Neelgund, Gururaj M. [1 ]
Bliznyuk, Valery N. [2 ]
Oki, Aderemi [1 ]
机构
[1] Prairie View A&M Univ, Dept Chem, Prairie View, TX 77446 USA
[2] Clemson Univ, Dept Environm Engn & Earth Sci, Clemson, SC 29634 USA
关键词
Graphene; Polyaniline; Photocatalyst; Photothermal effect; Electrical conductivity; ELECTROCHEMICAL PERFORMANCE; COMPOSITE; DEGRADATION; OXIDE; LIGHT; NANOPARTICLES; POLLUTANT; CELLS; DYES;
D O I
10.1016/j.apcatb.2016.01.009
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Herein, we present a novel acid-less synthetic approach for in-situ polymerization of aniline synchronized with reduction of graphene oxide to graphene. This method provides uniform deposition of ordered polyaniline nanotubes over the surface of graphene nanosheets. The synthesized graphene-polyaniline nanocomposite has the ability of complete removal of harmful dyes commonly used in industry: such as methyl orange, methylene blue, and rhoadmine B from the waste water under the exposure to natural sunlight. The system can be used as an efficient solar energy operated photocatalyst due to effective suppression of recombination of the charge carriers. The unique spatial structure of the graphene-polyaniline nanocomposite has high chemical stability, can be recycled after photolysis, and allows using in multiple cycles without reduction in its photocatalytic activity. In addition, the graphene-polyaniline nanocomposite exhibits strong near-infrared (NIR) absorption, good photothermal stability, as well as shows substantial thermal energy generation under exposure to 808 or 980 nm NIR lasers. The electrical conductivity of polyaniline nanotubes is improved as a result of their conjugation with graphene nanosheets in the nanocomposite. Owing to its outstanding photocatalytic activity and chemical stability, the reported graphene-polyaniline nanocomposite has a great potential in purification of industrially generated waste water.(C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:357 / 366
页数:10
相关论文
共 54 条
[2]   Novel graphene/polyaniline nanocomposites and its photocatalytic activity toward the degradation of rose Bengal dye [J].
Ameen, Sadia ;
Seo, Hyung-Kee ;
Akhtar, M. Shaheer ;
Shin, Hyung Shik .
CHEMICAL ENGINEERING JOURNAL, 2012, 210 :220-228
[3]   Understanding the Enhancement in Photoelectrochemical Properties of Photocatalytically Prepared TiO2-Reduced Graphene Oxide Composite [J].
Bell, Nicholas J. ;
Ng, Yun Hau ;
Du, Aijun ;
Coster, Hans ;
Smith, Sean C. ;
Amal, Rose .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (13) :6004-6009
[4]   Effects of surface and volume modification of poly(vinylidene fluoride) by polyaniline on the structure and electrical properties of their composites [J].
Bliznyuk, VN ;
Baig, A ;
Singamaneni, S ;
Pud, AA ;
Fatyeyeva, KY ;
Shapoval, GS .
POLYMER, 2005, 46 (25) :11728-11736
[5]   Role of Polyaniline on the Photocatalytic Degradation and Stability Performance of the Polyaniline/Silver/Silver Phosphate Composite under Visible Light [J].
Bu, Yuyu ;
Chen, Zhuoyuan .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (20) :17589-17598
[6]   Influence of the atomic structure on the Raman spectra of graphite edges -: art. no. 247401 [J].
Cançado, LG ;
Pimenta, MA ;
Neves, BRA ;
Dantas, MSS ;
Jorio, A .
PHYSICAL REVIEW LETTERS, 2004, 93 (24)
[7]   Reduced Graphene Oxide/Amaranth Extract/AuNPs Composite Hydrogel on Tumor Cells as Integrated Platform for Localized and Multiple Synergistic Therapy [J].
Chang, Guanru ;
Wang, Yunlong ;
Gong, Baoyou ;
Xiao, Yazhong ;
Chen, Yan ;
Wang, Shaohua ;
Li, Shikuo ;
Huang, Fangzhi ;
Shen, Yuhua ;
Xie, Anjian .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (21) :11246-11256
[8]   Changing the morphology of polyaniline from a nanotube to a flat rectangular nanopipe by polymerizing in the presence of amino-functionalized reduced graphene oxide and its resulting increase in photocurrent [J].
Chatterjee, Shreyam ;
Layek, Rama K. ;
Nandi, Arun K. .
CARBON, 2013, 52 :509-519
[9]   Transparent and conductive thin films of graphene/polyaniline nanocomposites prepared through interfacial polymerization [J].
Domingues, Sergio H. ;
Salvatierra, Rodrigo V. ;
Oliveirab, Marcela M. ;
Zarbin, Aldo J. G. .
CHEMICAL COMMUNICATIONS, 2011, 47 (09) :2592-2594
[10]   Hierarchically Ordered Macro-Mesoporous TiO2-Graphene Composite Films: Improved Mass Transfer, Reduced Charge Recombination, and Their Enhanced Photocatalytic Activities [J].
Du, Jiang ;
Lai, Xiaoyong ;
Yang, Nailiang ;
Zhai, Jin ;
Kisailus, David ;
Su, Fabing ;
Wang, Dan ;
Jiang, Lei .
ACS NANO, 2011, 5 (01) :590-596