Norm-attaining polynomials and differentiability

被引:8
作者
Ferrera, J [1 ]
机构
[1] Univ Complutense Madrid, Dept Anal Matemat, E-28040 Madrid, Spain
关键词
D O I
10.4064/sm151-1-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a polynomial version of Shmul'yan's Test, characterizing the polynomials that strongly attain their norm as those at which the norm is Frechet differentiable: We also characterize the Gateaux differentiability of the norm. Finally we study those properties for some classical Banach spaces.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 20 条
[1]   There is no bilinear Bishop-Phelps theorem [J].
Acosta, MD ;
Aguirre, FJ ;
Paya, R .
ISRAEL JOURNAL OF MATHEMATICS, 1996, 93 :221-227
[2]   A REFLEXIVE SPACE OF HOLOMORPHIC-FUNCTIONS IN INFINITELY MANY VARIABLES [J].
ALENCAR, R ;
ARON, RM ;
DINEEN, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 90 (03) :407-411
[3]  
Aron R.M., 1976, LECT NOTES MATH, V524, P213
[4]  
ARON RM, 1978, B SOC MATH FR, V106, P3
[5]  
ARON RM, 1995, LECT NOTES PURE APPL, V172, P19
[6]   Lower bounds for norms of products of polynomials [J].
Benítez, C ;
Sarantopoulos, Y ;
Tonge, A .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1998, 124 :395-408
[7]   POLYNOMIAL PROPERTIES OF BANACH-SPACES [J].
CHOI, YS ;
KIM, SG .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 190 (01) :203-210
[8]   Norm or numerical radius attaining multilinear mappings and polynomials [J].
Choi, YS ;
Kim, SG .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1996, 54 :135-147
[9]   A THEOREM ON POLYNOMIAL-STAR APPROXIMATION [J].
DAVIE, AM ;
GAMELIN, TW .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 106 (02) :351-356
[10]  
Deville R., 1993, PITMAN MONOGRAPHS SU, V64