On the [162,8,80] codes

被引:3
作者
Boukliev, I
Dodunekov, SM
Helleseth, T
Ytrehus, O
机构
[1] BULGARIAN ACAD SCI,INST MATH & INFORMAT,BU-1113 SOFIA,BULGARIA
[2] UNIV BERGEN,DEPT INFORMAT,HIB,N-5020 BERGEN,NORWAY
关键词
optimal binary codes;
D O I
10.1109/18.641576
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Constructions of [162, 8, 80] and [159, 8, 78] codes are given. This solves the open problems of finding the minimum length of binary codes of dimension 8 and minimum distances 78 and 80, respectively.
引用
收藏
页码:2055 / 2057
页数:3
相关论文
共 19 条
[1]   NOTE ON GRIESMER BOUND [J].
BAUMERT, LD ;
MCELIECE, RJ .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1973, 19 (01) :134-135
[2]  
BOUKLIEV I, 1995, P INT WORKSH OPT COD, P15
[3]   AN UPDATED TABLE OF MINIMUM-DISTANCE BOUNDS FOR BINARY LINEAR CODES [J].
BROUWER, AE ;
VERHOEFF, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (02) :662-677
[4]  
BROUWER AE, DES CODES CRYPTOGR, V11, P261
[5]  
Dodunekov S. M., 1993, Problems of Information Transmission, V29, P132
[6]   AN IMPROVEMENT OF THE GRIESMER BOUND FOR SOME SMALL MINIMUM DISTANCES [J].
DODUNEKOV, SM ;
MANEV, NL .
DISCRETE APPLIED MATHEMATICS, 1985, 12 (02) :103-114
[7]   NEW BOUNDS ON BINARY LINEAR CODES OF DIMENSION 8 [J].
DODUNEKOV, SM ;
HELLESETH, T ;
MANEV, N ;
YTREHUS, O .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1987, 33 (06) :917-919
[8]  
DODUNEKOV SM, 1988, P INT WORKSH ALG COM, P38
[9]   NEW BINARY-CODES [J].
GRONEICK, B ;
GROSSE, S .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (02) :510-512
[10]  
HELLESETH T, 1989, 41 U BERG DEP INF