Preconditioned Lanczos method for generalized Toeplitz eigenvalue problems

被引:4
作者
Wang, Yuan-Yuan [2 ]
Lu, Lin-Zhang [1 ,2 ]
机构
[1] Guizhou Normal Univ, Sch Math & Comp Sci, Guiyang, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen, Peoples R China
基金
中国国家自然科学基金;
关键词
Toeplitz matrix; Sine transform; Lanczos method; Preconditioning; MINIMUM EIGENVALUE; ALGORITHM;
D O I
10.1016/j.cam.2008.05.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We employ the sine transform-based preconditioner to precondition the shifted Toeplitz matrix A(n) - rho B-n involved in the Lanczos method to compute the minimum eigenvalue of the generalized symmetric Toeplitz eigenvalue problem A(n)chi = lambda B-n chi, where A(n) and B-n are given matrices of suitable sizes. The sine transform-based preconditioner can improve the spectral distribution of the shifted Toeplitz matrix and, hence, can speed up the convergence rate of the preconditioned Lanczos method. The sine transform-based preconditioner can be implemented efficiently by the fast transform algorithm. A convergence analysis shows that the preconditioned Lanczos method converges sufficiently fast, and numerical results show that this method is highly effective for a large matrix. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:66 / 76
页数:11
相关论文
共 20 条
[1]  
Anderson E., 1999, LAPACK USERS GUIDE, DOI DOI 10.1137/1.9780898719604
[2]  
[Anonymous], 1997, Applied Numerical Linear Algebra
[3]  
[Anonymous], 1992, Numerical Methods for Large Eigenvalue Problems
[4]  
[Anonymous], 1996, Iterative Methods for Sparse Linear Systems
[5]  
Bai Z., 2000, Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide, DOI DOI 10.1137/1.9780898719581
[6]   Sine transform based preconditioners for symmetric Toeplitz systems [J].
Chan, RH ;
Ng, MK ;
Wong, CK .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 232 :237-259
[7]   COMPUTING THE MINIMUM EIGENVALUE OF A SYMMETRICAL POSITIVE DEFINITE TOEPLITZ MATRIX [J].
CYBENKO, G ;
VANLOAN, C .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1986, 7 (01) :123-131
[8]   FAST ORDER-RECURSIVE GENERALIZED HERMITIAN TOEPLITZ EIGENSPACE DECOMPOSITION [J].
FARGUES, MP ;
BEEX, AAL .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 1991, 4 (01) :99-117
[9]  
Golub G. H., 2013, Matrix Computations, V4th ed., DOI DOI 10.56021/9781421407944
[10]   An inverse free preconditioned Krylov subspace method for symmetric generalized eigenvalue problems [J].
Golub, GH ;
Ye, Q .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 24 (01) :312-334