Remarks on regularity for p-Laplacian type equations in non-divergence form

被引:26
作者
Attouchi, Amal [1 ]
Ruosteenoja, Eero [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, POB 35, FI-40014 Jyvaskyla, Finland
基金
芬兰科学院;
关键词
p-Laplacian; Viscosity solutions; Local C-1; C-alpha regularity; Integrability of second derivatives; VISCOSITY SOLUTIONS; BOUNDARY-REGULARITY; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; WEAK SOLUTIONS; EQUIVALENCE; SYSTEMS; SETS;
D O I
10.1016/j.jde.2018.04.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a singular or degenerate equation in non-divergence form modeled on the p-Laplacian, -vertical bar Du vertical bar(gamma) (Delta u + (p -2)Delta(N)(infinity)u) = f in Omega. We investigate local C-1,C-alpha regularity of viscosity solutions in the full range gamma > -1 and p > 1, and provide local W-2,W-2 estimates in the restricted cases where p is close to 2 and gamma is close to 0. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:1922 / 1961
页数:40
相关论文
共 57 条
[41]  
Li DS, 2017, MATH Z, V285, P1167, DOI 10.1007/s00209-016-1743-5
[42]   BOUNDARY-REGULARITY FOR SOLUTIONS OF DEGENERATE ELLIPTIC-EQUATIONS [J].
LIEBERMAN, GM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1988, 12 (11) :1203-1219
[44]   On singular sets of local solutions to p-Laplace equations [J].
Lou, Hongwei .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2008, 29 (05) :521-530
[45]   Boundary first order derivative estimates for fully nonlinear elliptic equations [J].
Ma, Feiyao ;
Wang, Lihe .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (02) :988-1002
[46]   ON THE FATOU THEOREM FOR P-HARMONIC FUNCTIONS [J].
MANFREDI, JJ ;
WEITSMAN, A .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1988, 13 (06) :651-668
[47]  
Maugeri A., 2000, Elliptic and Parabolic Equations with Discontinuous Coefficients, V109
[48]   On viscosity and weak solutions for non-homogeneous p-Laplace equations [J].
Medina, Maria ;
Ochoa, Pablo .
ADVANCES IN NONLINEAR ANALYSIS, 2019, 8 (01) :468-481
[49]   A REGULARITY RESULT FOR THE p-LAPLACIAN NEAR UNIFORM ELLIPTICITY [J].
Mercuri, Carlo ;
Riey, Giuseppe ;
Sciunzi, Berardino .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (03) :2059-2075
[50]   Regularity of Weak Solutions of Homogeneous or Inhomogeneous Quasilinear Elliptic Equations [J].
Pucci, Patrizia ;
Servadei, Raffaella .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (07) :3329-3363