Remarks on regularity for p-Laplacian type equations in non-divergence form

被引:26
作者
Attouchi, Amal [1 ]
Ruosteenoja, Eero [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, POB 35, FI-40014 Jyvaskyla, Finland
基金
芬兰科学院;
关键词
p-Laplacian; Viscosity solutions; Local C-1; C-alpha regularity; Integrability of second derivatives; VISCOSITY SOLUTIONS; BOUNDARY-REGULARITY; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; WEAK SOLUTIONS; EQUIVALENCE; SYSTEMS; SETS;
D O I
10.1016/j.jde.2018.04.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a singular or degenerate equation in non-divergence form modeled on the p-Laplacian, -vertical bar Du vertical bar(gamma) (Delta u + (p -2)Delta(N)(infinity)u) = f in Omega. We investigate local C-1,C-alpha regularity of viscosity solutions in the full range gamma > -1 and p > 1, and provide local W-2,W-2 estimates in the restricted cases where p is close to 2 and gamma is close to 0. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:1922 / 1961
页数:40
相关论文
共 57 条
[1]   REGULARITY FOR MINIMIZERS OF NON-QUADRATIC FUNCTIONALS - THE CASE 1-LESS-THAN-P-LESS-THAN-2 [J].
ACERBI, E ;
FUSCO, N .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 140 (01) :115-135
[2]  
[Anonymous], 1968, LINEAR QUASILINEAR E
[3]  
[Anonymous], 1992, Bull. Amer. Math. Soc.
[4]  
[Anonymous], 1983, Elliptic Partial Equations of Second Order
[5]  
[Anonymous], 1961, P S PURE MATH
[6]  
[Anonymous], 2007, DIRICHLET PROBLEM SI
[7]  
[Anonymous], 1995, Fully nonlinear elliptic equations
[8]   C1,α regularity for the normalized p-Poisson problem [J].
Attouchi, Amal ;
Parviainen, Mikko ;
Ruosteenoja, Eero .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2017, 108 (04) :553-591
[9]  
Bers L., 1955, CONV INT EQ LIN DER, P141
[10]   c1,β REGULARITY FOR DIRICHLET PROBLEMS ASSOCIATED TO FULLY NONLINEAR DEGENERATE ELLIPTIC EQUATIONS [J].
Birindelli, I. ;
Demengel, F. .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2014, 20 (04) :1009-1024