Locating Roman Domination in Graphs

被引:0
作者
Rad, Nader Jafari [1 ]
Rahbani, Hadi [1 ]
Volkmann, Lutz [2 ]
机构
[1] Shahrood Univ Technolog, Dept Math, Shahrood, Iran
[2] Rhein Westfal TH Aachen, Lehrstuhl Math 2, Templergraben 55, D-52056 Aachen, Germany
关键词
Roman domination number; Locating domination number; SETS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Roman dominating function (or just RDF) on a graph G = (V, E) is a function f : V -> {0, 1, 2} satisfying the condition that every vertex u for which f (u) = 0 is adjacent to at least one vertex v for which f (v) = 2. The weight of an RDF f is the value f (V (G)) Sigma(u is an element of V(G)) f (u). An RDF f can be represented as f = (V-0, V-1, V-2), where V-i = {v is an element of V : f(v) = i} for i = 0, 1, 2. An RDF f = (V-0, V-1, V-2) is called a locating Roman dominating function (or just LRDF) if N(u) boolean AND V-2 not equal N(v) boolean AND V-2 for any pair u, v of distinct vertices of V-0. The locating Roman domination number gamma(L)(R)(G) is the minimum weight of an LRDF of G. In this paper, we initiate the study of the locating Roman domination number in graphs. We show that the decision problem for the locating Roman domination problem is NP-complete for bipartite graphs and chordal graphs. We relate the locating Roman domination number to the Roman domination number and also locating domination number, and present several bounds and characterizations for the locating Roman domination number of a graph.
引用
收藏
页码:203 / 222
页数:20
相关论文
共 24 条
  • [1] Adabi M, 2012, AUSTRALAS J COMB, V52, P11
  • [2] Ahangar H. A., 2014, TOTAL ROMAN DO UNPUB
  • [3] Signed Roman domination in graphs
    Ahangar, H. Abdollahzadeh
    Henning, Michael A.
    Loewenstein, Christian
    Zhao, Yancai
    Samodivkin, Vladimir
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 27 (02) : 241 - 255
  • [4] Blidia M, 2008, AUSTRALAS J COMB, V42, P309
  • [5] Blidia M, 2007, AUSTRALAS J COMB, V39, P219
  • [6] Chellali M., 2016, DISCRETE APPL MATH
  • [7] Chellali M., 2008, Discuss. Math. Graph Theory, V28, P383
  • [8] Chellali M, 2009, AUSTRALAS J COMB, V45, P227
  • [9] Bounds on the locating-total domination number of a tree
    Chen, Xue-gang
    Sohn, Moo Young
    [J]. DISCRETE APPLIED MATHEMATICS, 2011, 159 (08) : 769 - 773
  • [10] Roman domination in graphs
    Cockayne, EJ
    Dreyer, PA
    Hedetniemi, SM
    Hedetniemi, ST
    [J]. DISCRETE MATHEMATICS, 2004, 278 (1-3) : 11 - 22