A functorial formalism for quasi-coherent sheaves on a geometric stack

被引:3
作者
Alonso Tarrio, Leovigildo [1 ]
Jeremias Lopez, Ana [1 ]
Perez Rodriguez, Marta [2 ]
Vale Gonsalves, Maria J. [1 ]
机构
[1] Univ Santiago de Compostela, Fac Matemat, Dept Alxebra, E-15782 Santiago De Compostela, Spain
[2] Univ Vigo, Dept Matemat, Esc Sup Enx Informat, E-32004 Orense, Spain
关键词
Algebraic stacks; Quasi-coherent sheaves; Cartesian presheaves; Grothedieck categories; Hopf algebroids; Topos;
D O I
10.1016/j.exmath.2014.12.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A geometric stack is a quasi-compact and semi-separated algebraic stack. We prove that the quasicoherent sheaves on the small flat topology, Cartesian presheaves on the underlying category, and comodules over a Hopf algebroid associated to a presentation of a geometric stack are equivalent categories. As a consequence, we show that the category of quasi-coherent sheaves on a geometric stack is a Grothendieck category. We also associate, in a 2-functorial way, to a 1-morphism of geometric stacks f: X -> Y, an adjunction f* (sic) f* for the corresponding categories of quasi-coherent sheaves that agrees with the classical one defined for schemes. This construction is described both geometrically in terms of the small flat site and algebraically in terms of comodules over the Hopf algebroid. C) 2015 Elsevier GmbH. All rights reserved.
引用
收藏
页码:452 / 501
页数:50
相关论文
共 30 条
[1]   The derived category of quasi-coherent sheaves and axiomatic stable homotopy [J].
Alonso Tarrio, Leovigildo ;
Jeremias Lopez, Ana ;
Perez Rodriguez, Marta ;
Vale Gonsalves, Maria J. .
ADVANCES IN MATHEMATICS, 2008, 218 (04) :1224-1252
[2]  
[Anonymous], 1971, Revetements etales et groupe fondamental (SGA 1), volume 224 of Lecture notes in mathematics
[3]  
[Anonymous], 1993, Geometric invariant theory
[4]  
[Anonymous], 1994, Handbook of categorical algebra: volume 1, basic category theory, DOI DOI 10.1017/CBO9780511525872
[5]  
[Anonymous], 1970, LECT NOTES MATH
[6]  
Aran M., 1972, LECT NOTES MATH, V269
[7]   VERSAL DEFORMATIONS AND ALGEBRAIC STACKS [J].
ARTIN, M .
INVENTIONES MATHEMATICAE, 1974, 27 (03) :165-189
[8]  
Behrend KA, 2003, MEM AM MATH SOC, V163, pVII
[9]  
BENABOU J, 1970, CR ACAD SCI A MATH, V270, P96
[10]  
Bosch S., 1990, ERGEBNISE MATH IHRER, V21